Skip to main content

SHRUTI: A Neurally Motivated Architecture for Rapid, Scalable Inference

  • Chapter
Perspectives of Neural-Symbolic Integration

Part of the book series: Studies in Computational Intelligence ((SCI,volume 77))

The ability to reason effectively with a large body of knowledge is a cornerstone of human intelligence. Consequently, the development of efficient, largescale reasoning systems has been a central research goal in computer science and artificial intelligence. Although there has been notable progress toward this goal, an efficient, large-scale reasoning system has remained elusive. Given that the human brain is the only extant system capable of supporting a broad range of efficient, large-scale reasoning, it seems reasonable to expect that an understanding of how the brain represents knowledge and performs inferences might lead to critical insights into the structure and design of large-scale inference syste

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stickel, M., Waldinger, R., Chaudhri, V.: A guide to snark. Technical report, Artificial Intelligence Center, SRI International, Menlo Park CA (2000)

    Google Scholar 

  2. Kalman, J.: Automated reasoning with Otter. Rinton Press, Princeton NJ (2001)

    MATH  Google Scholar 

  3. McCune, W.: Otter 3.3 reference manual. Technical Report Technical Memoran-dum No. 263, Mathematical and Computer Science Division, Argonne National Laboratory, Argonne IL (2003)

    Google Scholar 

  4. Chalupsky, H., MacGregor, R., Russ, T.: PowerLoom Manual. Information Sciences Institute, Marina del Rey CA. (2006)

    Google Scholar 

  5. Carpenter, P., Just, M.: Reading comprehension as eyes see it. In Just, M., Carpenter, P., eds.: Cognitive Processes in Comprehension. Erlbaum, Marwah NJ (1977)

    Google Scholar 

  6. McKoon, G., Ratcliff, R.: Inference during reading. Psychological Review 99 (1992) 440-466

    Article  Google Scholar 

  7. Keenan, J., Baillet, S., Brown, P.: The effects of causal cohesion on comprehen-sion and memory. Journal of Verbal Learning and Verbal Behaavior 23 (1984) 115-126

    Article  Google Scholar 

  8. Kintsch, W.: The role of knowledge discourse comprehension: A construction-integration model. Psychological Review 95 (1988) 163-182

    Article  Google Scholar 

  9. Shastri, L., Ajjanagadde, V.: From simple associations to systematic reasoning. Behavioral and Brain Sciences 16 (1993) 417-494

    Google Scholar 

  10. Feldman, J.: Dynamic connections in neural networks. Biological Cybernetics 46(1982) 27-39

    Article  Google Scholar 

  11. Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence 46 (1990) 159-216

    Article  MathSciNet  Google Scholar 

  12. Plate, T.: Holographic reduced representations. IEEE Transactions on Neural Networks 6 (1995) 623-641

    Article  Google Scholar 

  13. Touretzky, D., Hinton, G. Cognitive Science 12 (1988) 423-466

    Article  Google Scholar 

  14. Barnden, J.A., Srinivas, K.: Encoding techniques for complex information structures in connectionist systems. Connection Science 3 (1991) 269-315

    Article  Google Scholar 

  15. Lange, T., Dyer, M.: High-level inferencing in a connectionist network. Connection Science 1 (1989) 181-217

    Article  Google Scholar 

  16. Sun, R.: On variable binding in connectionist networks. Connection Science 4 (1992) 93-124

    Article  Google Scholar 

  17. Ajjanagadde, V., Shastri, L.: Efficient inference with multi-place predicates and variables in a connectionist system. In: Proceedings of the Eleventh Conference of the Cognitive Science Society. (1989) 396-403

    Google Scholar 

  18. Park, N., Robertson, D., Stenning, K.: An extension of the temporal synchrony approach to dynamic variable binding. Knowledge-Based Systems 8 (1995) 345- 358

    Google Scholar 

  19. Sougne, J.: Connectionism and the problem of multiple instantiation. Trends in Cognitive Sciences 2 (1998) 183-189

    Article  Google Scholar 

  20. Hummel, J., Holyoak, K.: Distributed representations of structure: a theory of analogical access and mapping. Psychological Review 104 (1997) 427-466

    Article  Google Scholar 

  21. von der Malsburg, C.: The correlation theory of brain function. Technical Re-port 81-2, Max-Planck Institute for Biophysical Chemistry, Gottingen Germany (1981)

    Google Scholar 

  22. Shastri, L.: Temporal synchrony, dynamic bindings, and shruti - a represen-tational but non-classical model of reflexive reasoning. Behavioral and Brain Sciences 19 (1996) 331-337

    Article  Google Scholar 

  23. Shastri, L.: Advances in shruti - a neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony. Applied Intelligence 11 (1999) 79-108

    Article  Google Scholar 

  24. Shastri, L.: Types and quantifiers in shruti — a connectionist model of rapid reasoning and relational processing. In Werter, S., Sun, R., eds.: Hybrid Informa-tion Processing in Adaptive Autonomous Vehicles. Springer-Verlag, Heidelberg Germany (2000) 28-45

    Google Scholar 

  25. Mani, D., Shastri, L.: Reflexive reasoning with multiple-instantiation in a con-nectionist reasoning system with a type hierarchy. Connection Science 5 (1993) 205-242

    Article  Google Scholar 

  26. Shastri, L., Wendelken, C.: Seeking coherent explanations - a fusion of struc-tured connectionism, temporal synchrony, and evidential reasoning. In: Pro-ceedings of the Twenty-Second Conference of the Cognitive Science Society, Philadelphia PA (2000)

    Google Scholar 

  27. Wendelken, C., Shastri, L.: Probabilistic inference and learning in a connection-ist causal network. In: Proceedings of the Second International Symposium on Neural Computation, Berlin Germany (2000)

    Google Scholar 

  28. Wendelken, C., Shastri, L.: Combining belief and utility in a structured con-nectionist agent architecture. In: Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society, Fairfax VA (2002)

    Google Scholar 

  29. Shastri, L., Grannes, D.: A connectionist treatment of negation and inconsistency. In: Proceedings of the Eighteenth Conference of the Cognitive Science Society. (1996)

    Google Scholar 

  30. Shastri, L., Grannes, D., Narayanan, S., Feldman, J.: A connectionist encoding of parameterized schemas and reactive plans. Technical Report TR-02-008, International Computer Science Institute, Berkeley, California, 94704 (2002)

    Google Scholar 

  31. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco CA (1988)

    Google Scholar 

  32. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton NJ (1957)

    MATH  Google Scholar 

  33. Thompson, B., Cohen, M.: Naturalistic decision making and models of compu-tational intelligence. Neural Computing Surveys 2 (1999) 26-28

    Google Scholar 

  34. Shastri, L.: Episodic memory trace formation in the hippocampal system: a model of cortico-hippocampal interactions. Technical Report TR-01-004, Inter-national Computer Science Institute, Berkeley, California, 94704 (2001)

    Google Scholar 

  35. Shastri, L.: Episodic memory and cortico-hippocampal interactions. Trends in Cognitive Sciences 6 (2002) 162-168

    Article  Google Scholar 

  36. Bliss, T., Collingridge, G.: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 (1993) 31-39

    Article  Google Scholar 

  37. Shastri, L.: A computationally efficient abstraction of long-term potentiation. Neurocomputing 44-46 (2002) 33-41

    Article  Google Scholar 

  38. Bi, G., Poo, M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual review of neuroscience 24 (2001) 139-166

    Article  Google Scholar 

  39. Wickelgren, W.A.: Learning and Memory. Prentice Hall, Englewood Cliffs NJ (1977)

    Google Scholar 

  40. Sowa, J., ed.: Principles of Semantic Networks. Morgan Kaufmann, San Francisco (1991)

    MATH  Google Scholar 

  41. Jordan, M., ed.: Learning in Graphical Models. MIT Press, Cambridge MA (1998)

    MATH  Google Scholar 

  42. Quillian, M.: Semantic memory. In Minsky, M., ed.: Semantic Information Processing. MIT Press, Cambridge MA (1968) 227-270

    Google Scholar 

  43. Fahlman, S.: NETL: A System for Representing and Using Real-World Knowledge. MIT Press, Cambridge MA (1979)

    MATH  Google Scholar 

  44. Charniak, E.: Passing markers: A theory of contextual influence in language comprehension. Cognitive Science 7 (1983) 171-190

    Article  Google Scholar 

  45. Hendler, J.: Integrating marker-passing and problem solving: a spreading acti-vation approach to improved choice in problem solving. Erlbaum, Marwah NJ (1987)

    Google Scholar 

  46. Henderson, J.: Connectionist syntactic parsing using temporal variable binding. Journal of Psycholinguistic Research 23 (1994) 353-379

    Article  Google Scholar 

  47. Shastri, L.: A computational model of tractable reasoning - taking inspiration from cognition. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambery France (1993) 202-207

    Google Scholar 

  48. Mani, D.: The design and implementation of massively parallel knowledge rep-resentation and reasoning systems: a connectionist approach. PhD thesis, Uni-versity of Pennsylvania (1995)

    Google Scholar 

  49. Shastri, L., Mani, D.: Massively parallel knowledge representation and reason-ing: Taking a cue from the brain. In Geller, J., Kitano, H., Suttner, C., eds.: Parallel Processing for Artificial Intelligence 3. Elseveir Science, Amsterdam Netherland (1997) 3-40

    Chapter  Google Scholar 

  50. McIlraith, S., Amir, E.: Theorem proving with structured theories. In: Proc. of the Seventeenth International Joint Conference on Artificial Intelligence, Seattle WA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shastri, L. (2007). SHRUTI: A Neurally Motivated Architecture for Rapid, Scalable Inference. In: Hammer, B., Hitzler, P. (eds) Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73954-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73954-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73953-1

  • Online ISBN: 978-3-540-73954-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics