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Abstract. Shape analyses are often imprecise in their numerical reason-
ing, whereas numerical static analyses are often largely unaware of the
shape of a program’s heap. In this paper we propose a lazy method of
combining a shape analysis based on separation logic with an arbitrary
arithmetic analysis. When potentially spurious counterexamples are re-
ported by our shape analysis, the method constructs a purely arithmetic
program whose traces over-approximate the set of counterexample traces.
It then uses this arithmetic program together with the arithmetic analy-
sis to construct a refinement for the shape analysis. Our method is aimed
at proving properties that require comprehensive reasoning about heaps
together with more targeted arithmetic reasoning. Given a sufficient pre-
condition, our technique can automatically prove memory safety of pro-
grams whose error-free operation depends on a combination of shape,
size, and integer invariants. We have implemented our algorithm and
tested it on a number of common list routines using a variety of arith-
metic analysis tools for refinement.

1 Introduction

Automatic formal software verification tools are often designed either to prove
arithmetic properties (e.g. is x always greater than 0 at program location 359)
or data structure properties (e.g. does p always point to a well-formed list at
program location 457). Shape analyses are developed to reason about the linked
structure of data on the heap, while arithmetic analyses are designed to reason
about the relationships between integer values manipulated by a program. Since
integers can be stored in the heap and certain properties of data structures (such
as the length of lists) are integer valued, there is non-trivial interaction between
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the two theories. Thus, combining a shape analysis and an arithmetic analysis
is not just a matter of applying each analysis separately.

We propose a new technique for combining a shape analysis based on separa-
tion logic [24] with an arbitrary arithmetic analysis. The combination technique
operates by using the arithmetic analysis as a back-end for processing abstract
counterexamples discovered during the shape analysis. Our shape analysis is
based on those described in [4] and [21]. It is an application of abstract interpre-
tation [11] where the abstract domain uses a fragment of separation logic. As in
[4], we assume that the shape analysis supports arithmetic reasoning in its sym-
bolic execution engine, but does not maintain enough arithmetic information in
its widening step. To refine this widening step will be the job of the arithmetic
analysis tool.

The shape analysis communicates with the arithmetic analysis via counterex-
ample programs—integer programs that represent the arithmetic content of the
abstract counterexamples. Because the language of communication consists of
integer programs, any integer analysis tool can be used without modification to
strengthen our shape analysis. Viewed another way, this technique allows any
tool targeting integer programs to be applied—again without modification—
to programs that manipulate the kinds of heap-based data structures that our
shape analysis supports.

In summary, we present a new combination of shape and arithmetic analyses
with the following novel collection of characteristics:

— Any arithmetic analysis can be used. The combination is not tied to any
particular verification paradigm, and we can use tools based on abstract
interpretation, such as ASTREE[7], just as easily as those based on model
checking, such as BLAsT[19], SLAM]2], and ARMC][23].

— The arithmetic analysis explicitly tracks integer values which appear quan-
tified in the symbolic states but are absent in the concrete states, such as
list lengths. This use of new variables in the arithmetic program to reason
about quantified values makes soundness of the combination technique non-
obvious. This conjunction under quantifiers aspect also makes it difficult to
see the combination technique as an instance of standard abstract domain
constructions such as the direct or reduced product, or as a use of Hoare
logic’s conjunction rule.

— The shape analysis which will be strengthened explores the same abstract
state space as the standard one would. That is, we do not explore the carte-
sian product of the shape and arithmetic state spaces. In this way the com-
bined analysis treats the shape and arithmetic information independently (as
in independent attribute analyses) except for the relations between shape
and arithmetic information identified by the shape analysis as critical to
memory- or assert-safety.

— Arithmetic refinement is performed only on-demand, when the standard
shape analysis has failed to prove memory safety on its own.

— Because we track shape information at all program points, our analysis is
able to verify properties such as memory-safety and absence of memory leaks.



2 Motivating Example

Consider the example code fragment in the left half of Figure 1. This program
creates a list of length n and then deletes it. Neither an arithmetic static analysis
nor a traditional shape analysis alone can prove that curr is not equal to NULL
at line 15. As we will see, our analysis is able to prove that this program is
memory-safe.

Consider how a shape analysis without arithmetic support would treat this
program. Using symbolic execution and widening, the analysis might find an
invariant stating that, at location 4, curr is a pointer to a well-formed singly-
linked and NULL-terminated list and ¢ is a pointer to a single heap cell. In
separation logic, we would express this invariant as 3k, v. Is* (curr, NULL)xi — v
where Is is a recursively-defined list predicate and k represents the length of the
list. Note that the shape analysis has not attempted to infer any invariance
properties of the integer values k and v.

From this point the analysis might explore the path 4 — 12 — 13 — 14 —
15, obtaining

k. Is*(curr, NULL)Aj =0Aj <n (1)

List * curr = NULL; 1 curr = 0;

2 int i = malloc(sizeof(int)); skip;
3 *i = 0; int v = 0;
int k = 0;
4  while(*i < n) { 4 while(v < n) {
5 t = (List*) malloc(sizeof(List)); 5 t = nondet();
6 t->next = curr; 6 skip;
7 t->data = addr; 7 skip;
8 addr += next_addr(addr); 8 addr += next_addr(addr);
9 curr = t; 9 curr = t;
10 *¥i = *xi + 1; 10 v=v+1;
k=k+1;
11 } 11 }
12 free(i); 12 skip;

13 int j = 0;
14  while(j < n) {

13 int j = 0;
14  while(j < n) {

15 t = curr->next; 15 if(k > 0)
b := nondet();
t := b;
else error();
16 free(curr); 16 skip;
17 curr = t; 17 curr = t;
18 J+; 18 jH+;
k=k-1;
19 } 19 }

Fig. 1. Left: Example showing motivation for combined shape and arithmetic reason-
ing. Right: Arithmetic counterexample program produced by the shape analysis.



At line 15, the program looks up the value in the next field of curr. But if the
list is empty, then curr = NULL and the lookup will fail. Because (1) does not
imply that curr # NULL, this case cannot be ruled out and the analysis would
report a potential violation of memory safety.

However, this case cannot actually arise due to the fact that the second loop
frees only as many heap cells as the first loop allocates. To rule out this spurious
counterexample, we need to strengthen the invariants associated with the loops,
essentially discovering that the value stored in the heap cell at i tracks the
length of the list being created in the first loop and j tracks the length of the
unprocessed portion of the list in the second loop. Our algorithm achieves this
by generating a counterexample program representing all paths that satisfy the
shape formulas and could lead to the potential memory error.

The program we generate for this counterexample is given in the right half
of Figure 1. We have numbered each line with the line number in the original
program from which it is derived. Newly added commands are un-numbered. The
counterexample program involves two new variables, £ and v, which represent
the length of the list and the value pointed to by i, respectively.? New variables
are added whenever the shape analysis encounters an integer value, such as the
length of a list or the contents of an integer-valued heap cell.

Note that the control flow of the counterexample program is reminiscent of
the control flow of the original program. The only difference here is that the
counterexample program has an additional branch at location 15. This corre-
sponds to a case split in the shape analysis—the memory access at location 15
in the original program is safe provided that k (the length of the list) is greater
than 0. Also note that heap commands have been replaced by purely arithmetic
commands that approximate their effect on the arithmetic program’s stack vari-
ables. Two examples of this are the command at location 5, where allocation
is replaced by nondeterministic assignment, and the command at location 10,
where the heap store command that updates the contents of i is replaced by a
command that updates the integer variable v.

Another unique aspect of our counterexample programs is that they may
contain looping constructs. As such, they represent not just a single counterex-
ample, but rather a set of counterexamples. Returning to the example in Figure
1, recall that the loop invariant at location 4 is Jk. Is" (curr, NULL). To evaluate
the memory safety of the command at location 15, we start with this invariant
and compute postconditions along the path from 4 to 15. We then discover that
the resulting postcondition is too weak to prove memory safety at location 15 and
wish to generate a counterexample. Because the error state in the counterexam-
ple follows from the loop invariant at location 4, the counterexample can contain
any number of unrollings of this loop. Rather than commit to a specific number
and risk making overly specific conclusions based on the counterexample, we in-
stead include a loop in the counterexample program. As we will see, this makes
the set of paths through the counterexample program correspond to the full set

3 The role of the third new variable, b, is more subtle. It arises due to expansion of a
definition during theorem proving. This is discussed in detail in Section 4.1.



of abstract counterexamples. This ensures that the arithmetic tool generates a
strengthening that rules out all spurious counterexamples (i.e. it is forced to
discover a strengthening that is also a loop invariant) and is key to making the
collaboration between the shape analysis and arithmetic analysis tool work.

Now let us look at this collaboration in more detail. While trying to prove
that error() in the counterexample program (Figure 1) is not reachable, an
arithmetic analysis tool such as ASTREE[7], BLAST [19], or ARMC [23] might
prove the following arithmetic invariant at location 15: kK = n—j. The soundness
theorem for our system establishes that this invariant of the arithmetic coun-
terexample program is also an invariant of the original program. As such, it is
sound to conjoin this formula with our shape invariant at this location, obtaining
k. lsk(czm", NULL) ANk = n—j. Note that the arithmetic invariant is conjoined
inside the scope of the quantifier. This is sound because the variables we add to
the counterexample program (such as k) correspond to the existentially quanti-
fied variables and their values correspond to the witnesses we used when proving
those existential formulas. We formally prove soundness in Section 5.

Now, armed with the strengthened invariant, the shape analysis can rule out
the false counterexample of NULL-pointer dereference at location 15. We will
have the formula lsk(curr, NULL)ANk =n—jAj <n, from which we can derive
k > 0—a sufficient condition for the safety of the memory access.

3 Preliminaries

Our commands include assignment (e:=f), heap load (z:=[e]), heap store
([e]:= f), allocation (x:=alloc()), disposal (free(e)), non-deterministic assign-
ment (x := ?), and an assume command, which is used to model branch condi-
tions. Note that brackets are used to indicate dereference. We use C' to denote
the set of commands and the meta-variable ¢ to range over individual commands.
The concrete semantics are standard (see [24]) and are omitted. We present only
the concrete semantic domains and then move directly to a presentation of the
abstract domain and its associated semantics.

The concrete semantic domain consists of pairs (s, h), where s is the stack
and h is the heap. Formally, the stack is simply a mapping from variables to
their values, which are either integers or addresses.

Val <= Int U Addr

Stack = Var — Val

The heap is a finite partial function from non-null addresses to records, which
are functions from a finite set of fields to values: Record = Field — Val, and
Heap = (Addr — {0}) 2 Record. We also have a state abort which is used to
indicate failure of a command. This may be occur due to a failed assert statement
or an attempt to dereference an address that is not in the domain of the heap.

Our analysis uses a fragment of separation logic [24] as an abstract represen-
tation of the contents of the stack and the heap. We have expressions for denoting
addresses and records. Address expressions are simply variables or the constant



NULL, which denotes the null address. Integer expressions include variables and
the standard arithmetic operations. Value expressions refer to expressions that
may denote either integers or addresses. Record expressions are lists of field
labels paired with value expressions.

Address e, f,gu=x| NULL

Integer Expressions m,n =z |i|vy +va|v1 —va ...
Value Ezpressions v,k :=e|m

Record p = label: v,p | €

We assume a standard semantics for expressions and records, such that if s €
Stack then [e] s € Addr and [p] s € Record. The meaning of predicates is given
in terms of the Stack x Heap pairs that satisfy them. When giving the semantics,
we use sets of pairs to describe the finite partial functions that constitute heaps.

Our predicates are divided into spatial predicates, which describe the heap,
and pure predicates, which describe the stack. The predicate emp denotes the
empty heap, and e +— [l1: v1,la: va,...,1l,: v,] describes the heap consisting of
a single heap cell at address e that contains a record where field I; maps to value
v1, lo maps to ve, etc. The atomic pure predicates include the standard arithmetic
predicates (<, <, =, etc.) and equality and disequality over address expressions.
Spatial formulas are built from conjunctions of atomic spatial predicates using
the * connective from separation logic. Intuitively, P * Q is satisfied when the
domain of the heap described by P is disjoint from that described by . Thus,
(e — p1) x (f — po) implies that e # f.

We also allow existential quantification and adopt the convention that un-
mentioned fields are existentially quantified. That is, if a record always contains
fields s and ¢, we write e — [s: v] to abbreviate 3z. e — [s: v,t: z].

From the atomic predicates we can inductively define predicates describing
data structures, such as the following predicate for singly-linked list segments.

Is*(e, f) = (k>0A32 e [n: :v/]*lsk_l(x’,f)) V (empAk=0Ae=f)

The length of the list is given by k, while e denotes the address of the first cell
(if the list is non-empty) and f denotes the address stored in the “next” field
(n) of the last cell in the list. If the list is empty, then k¥ = 0 and e = f.

Our implementation actually uses a doubly-linked list predicate. However,
in this paper we will use the simpler singly-linked list predicate in order to
avoid letting the details of the shape analysis obscure the arithmetic refinement
procedure, which is our main focus.

Our abstract states are drawn from the following grammar, where we use the
notation # to represent a list of variables.

e plis(e,f) | emp | S % S,
zle<fle=f|-P|P AP
3F EAID|T

Spatial Form X ::
Pure Form  II ::
Memory M ::



The formula T is satisfied by all concrete states, including abort, and is used
to indicate failure of a command. Elements of IT are called pure formulas, while
elements of X are called spatial formulas. We take terms from M as the elements
of our abstract domain and refer to them as abstract state formulas. We will use
the meta-variables S, P, and @ to refer to such formulas.

In the left column of Figure 3, we give the postcondition rules for our com-
mands. These are given as Hoare triples { P} ¢ {Q}, where P and @ are abstract
state formulas. To take the postcondition of state S with respect to command c,
we search for an S’ such that S = 5" and {5’} ¢ {@Q} is an instance of the rule
for ¢ in Figure 3. The formula @ is then the postcondition of the command. If
we cannot find such an S’, this corresponds to a failure to prove memory safety
of command ¢ and the abstract postcondition is T. For more on this process,
see the discussion of the “unfold” rule in [21] and the section on “rearrangement
rules” in [13].

4 Algorithm

A shape analysis based on separation logic, such as those in [21] and [13], will
generate an abstract transition system (ATS), which is a finite representation of
the reachable states of the program given as a transition system (A) with states
labeled by abstract state formulas. Such formulas are either formulas of separa-
tion logic or T, which indicates a potential violation of memory safety. If a path
from the initial state to T is found (a counterezample to memory safety), our al-
gorithm translates this path into an arithmetic program (Tr(A)). This arithmetic
program is then analyzed to obtain strengthenings for the invariants discovered
during shape analysis. The results of the arithmetic analysis are then combined
with the shape analysis results to produce a more refined ATS (/i) A particular
property of this combination is that if T can be shown to be unreachable in the
arithmetic program, then the original program is memory safe.

Definition 1 An abstract transition system is a tuple (Q, L, ¢, ~ ) where Q
is a set of states, v € Q is the start state, and L: QQ — S is a function that labels
each state with a separation logic formula describing the memory configurations
associated with that state (or T ). The last component, ~ is a labeled transition
relation. The labels are either program commands (c) or an empty label (¢). Thus,
~ CQx(CU{e}) x Q. For convenience, if t € (CU{e}) and q,q¢ € Q, we will
write g ~ ¢’ to abbreviate (q,t,q') € ~ .

We assume that quantified variables in the state labels are a-renamed to be
disjoint from the set of variables present in the commands labeling the edges.
We will refer to the edges labeled with commands as postcondition edges and the
edges labeled with € as weakening edges. The reason for these names can be seen
in the following definition of well-formedness, which we require of our ATSs.

Definition 2 An ATS (Q,L,t, ~ ) is well-formed iff for all q,¢' € Q and
ceC,i)q-~5 q implies that {L(q)}c{L(q')} is a valid separation logic triple
and i) q ~5 ¢ implies (L(q) = L(q')) is a valid separation logic entailment.



This ensures that the annotations associated with the abstract states are
consistent with the commands labeling the edges. That is, if ¢ ~ ¢/ and ¢ termi-
nates when executed from a state satisfying L(q), then it terminates in a state
satisfying L(q"). Well-formedness also ensures that the weakening edges are valid
entailments. The algorithms defined in [21] and [13] automatically construct an
abstract transition system that satisfies this condition.

In order to focus on the specifics of generating arithmetic programs from
counterexamples, which is the main contribution of this paper, we assume that
the abstract transition system has already been generated by running a separa-
tion logic based shape analysis on the input program. The interested reader can
refer to [21] and [13] for details on how the ATS is generated.

An example of the abstract transition system that the shape analysis might
generate is given in Figure 2. This ATS corresponds to the program discussed
in Section 2. Dotted lines are used for weakening edges, while solid lines denote
postcondition edges. We abbreviate assume(e) as a(e). Note that the shape anal-
ysis has discovered an invariant for the loop at control location 4, indicated by
the cycle at the bottom of the second column of states.

At control location 15, the system splits based on the value of k, the length
of the list. This is the one non-standard modification we make in our separation
logic shape analysis. Such an analysis would ordinarily try to execute curr :=
[curr.next] at location 15 given the precondition Jk. lsk(t, NULL). Since this
precondition does not imply that the command is memory safe (the list could be
empty), the analysis would simply conclude T. Instead, our shape analysis will
check to see if there is some condition under which the memory access would be
safe. More precisely, our theorem prover internally performs case splits and if one
of these cases results in safe execution, it returns this condition to the analysis.
The analysis then splits based on this condition and continues exploring the safe
branch (the unsafe branch remains labeled with T). For our definition of lists,
this condition is always a check on the length of the list. This is a key component
of our technique as it makes explicit the way in which size information about
data structures affects the safety of the program. It will then be the job of
the arithmetic analysis tool to show that the unsafe branch is infeasible due to
arithmetic constraints among the variables.

4.1 Generating Arithmetic Programs

The arithmetic program is generated by converting edges in the ATS to com-
mands that do not reference the heap. This translation involves making use of the
information about heap cells that the shape analysis has provided. For example,
given the state z — [data: y+2], we know that the command z = [x.data] will
result in z containing the value y + 2. We can achieve the same effect with the
command z = y + 2, which does not reference the heap but instead exploits the
fact that the shape analysis has determined the symbolic value for the contents
of the data field of z.

The fact that our formulas can involve existential quantifiers makes the com-
bination more expressive, and the translation more involved. Given the formula
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Fig. 2. Sample ATS after shape analysis.

Jy. x > [data: y + 2], it is clearly no longer sound to replace the command z
= x->data with the command z = y + 2. Since y is not a program variable,
its value is not specified from the point of view of the arithmetic analysis tool.
We must therefore ensure that the arithmetic program we generate contains a
variable y, corresponding to the quantified variable in the formula and that in
executions of the arithmetic program, y’s value is constrained in such a way that
it satisfies the separation logic formulas we received from the shape analysis.

We can formalize this idea of using the arithmetic commands to enable rea-
soning about quantified variables with the following definition, which describes
the properties the arithmetic command (¢’ in the definition) must have.

Definition 3 Let ¢ ~> ¢/ be an edge in an ATS (Q,L,t, ~ ). Let L(q) = 3Z. P
and L(q') = 3g. Q be abstract state formulas. A command ¢ is a quantifier-

free approximation (QFA) of the edge q ~> q' iff for any pure formulas P’
and @', the triple {P'} ¢ {Q'} implies the triple {32. PAP'} ¢ {37. Q A Q'}.

That is, reasoning using ¢’ is an over-approximation of reasoning under the
quantifier in the pre- and postconditions of ¢. In Section 5 on soundness, we
show that such reasoning can be extended to the whole program by replacing
each command in the original ATS with a quantifier-free approximation of that
command and reasoning about the ATS thus obtained.

Translating Postcondition Edges To find a purely arithmetic QFA for each
of the heap-manipulating commands, let us first look at the rules that are used
for adding postcondition edges to the ATS. These are given in the left column of



Shape Analysis Postcondition Rule Arith. Cmnd.

{32. 8} x=FE {32,z x=FE[x'/z]AS[z'/z]} | 2':=um;
= E[z/x]
{3z. 8} x:=7? {3,z S[z'/]} 2=z v:="7
{3z. S} z:=alloc() {Elx' Z. Sz’ Jz] x (x—[])} ¥i=x; v:="7
{32. S* (E — [p,t: F|)} =:=[E.t] {32',Z. z = Flz'/z] A i =x;
(5 + (B [prt: F)'/al} | wi= Fle' /2]
{32. S« (E— [p])} free(E) {3Z. S} €
{32. Sx (E— [p,t: G])} [Et]:=F {3Z. S%(Ew— [p,t: F])} €
{3z. S} assume(P) {3Z. S A P} assume(P)

Fig. 3. Rules for generating arithmetic commands from abstract postcondition edges.

Figure 3. They are presented as Hoare triples where the pre- and postconditions
are abstract state formulas. We use the notation S[z'/z] to mean S with 2’
substituted for z.

Note that the first three rules result in the abstract post-state having
one more quantifier than the abstract pre-state: they each have the form
{3z2. S} ¢ {3x,z. S’}. Our goal is to find an arithmetic command ¢ corre-
sponding to the original command ¢, and to use ¢’ to reason about c. As such,
we would like ¢’ to contain the new quantified variable. To do this in a way
such that ¢’ is a QFA, we need ¢’ to record the witness for the existential in the
postcondition. As an example, consider the command for assignment.

{32. S} x:=FE {32/, 2. x = E[2' /2] A S[2'/2]}

The variable z’ in the postcondition represents the old value of x. Thus, the
value of x before the assignment is the witness for 2’ in the postcondition. We
can record this fact using the sequence of commands z’:=z; z:=FE. We use the
same idea to handle the other two rules that add a quantifier.

Capturing the quantification in the new command is only part of the process.
We must also over-approximate the effect of the command on the program vari-
ables. For commands like allocation (z:=alloc()), the best we can do is replace
this with the nondeterministic assignment z:=7?. However, for lookup we can
use the technique mentioned at the beginning of this section: if the precondition
tells us that the ¢ field of cell E contains the value F', we can replace x:=[E.{]
with z:= F (and the precondition for lookup will always have this form).

The other heap commands (heap store and free) are replaced with no-ops.
This may be surprising since these commands can have indirect effects on the
values of integer variables in the abstract state formulas. Values stored in the
heap can later be loaded into variables. This case is already handled by our rule
for lookup, as can be seen by considering what happens when we translate the
command sequence [x.data] :=y + 3; z := [x.data] to arithmetic com-
mands. The first command will be converted to a no-op. To translate the second
command, we need to know its precondition. Supposing we start from the state
x — [ ], the postcondition of the first command is « + [data: y+ 3]. This means
that the translation will convert the second command to z:=y + 3, which has

10



the same effect on the program variable z as the original commands. So indirect
updates to program variables through the heap will be properly tracked.

Also, freeing memory cells can decrease the size of lists in the heap. To
incorporate reasoning about the length of lists, we must talk about how we
translate weakening edges in the ATS.

Translating Weakening Edges Weakening edges are added by the shape
analysis to the abstract transition system for two reasons. First, they are used to
rewrite abstract states into a form to which we can apply one of the postcondition
rules. For example, to execute x := [a.next] from the state

Jk. Is*(a, NULL) A a # NULL
we must first notice that this formula implies
Jy, k. a — [next: y] * Is"(y, NULL) A a # NULL
We can then apply the third postcondition rule to this state to get
Jy, k. a— [next: y] * lsk(y, NULLYNa # NULLANx =y

The other use of weakening edges is to show that certain formulas are invari-
ant over executions of a loop. For example, suppose we start in a state

k. Is*(a, NULL)
And after executing some commands, reach the state
3z, k. a — [next: ] * Is"(x, NULL)

If both these states are associated with the same program location, then we
have found a loop invariant since the second formula implies the first. This
fact is recorded in the ATS by connecting the second state to the first with a
weakening edge.

In both cases, we need to record information about the quantified variables
so that our arithmetic analysis can discover arithmetic relationships involving
these quantified variables. As with postcondition edges, we do this by recording
the witnesses for the quantified variables.

Recall that we have a weakening edge in the ATS only if 37. P F 3. Q.
Our goal then is to find an arithmetic command ¢’ such that for any P, Q’, if
{P"}{Q'} then 3Z. PA P’ F 35. Q AQ'. We generate such a ¢ by analyzing the
proof of entailment between 3. P and Jy. Q. As we are interested in tracking
the values of existentially quantified variables, it is the rules for existential quan-
tifiers that end up being important for generation of the arithmetic commands.
In Figure 4 we present the standard rules for introduction and elimination of ex-
istential quantifiers, modified to produce the appropriate arithmetic commands.
The full details of entailment for our fragment of separation logic are omitted
for space reasons, but the system is similar to that described in [3].
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E-ELim
3¢. Pla/z]F32. Q (¢)

Az, PF32.Q {(a:=x; '; a:=7)

ad fo(37 Q)

E-INTRO

3y. P+ 3z Q[t/x] ()

= = ~ x fresh
Y. PF3x, 2. Q (z:=t; )

Fig. 4. Rules for generating arithmetic commands from proofs for weakening edges.

The notation P F Q{c) is used to mean that P entails @ and c¢ is the arith-
metic command that is a quantifier-free approximation of this entailment. For
existential elimination, we simply record the new constant that was introduced
for reasoning about the quantified variable on the left. We also nondetermin-
istically assign to the constant once we are done with it to ensure that it will
not appear free in any invariants the arithmetic tool produces. For existential
introduction, we record the witness used to establish the existential formula on
the right. We do this by having our entailment checker return a witness in ad-
dition to returning a yes/no answer to the entailment question. This is possible
because the entailment procedure sometimes proves existentials constructively.
When entailment is proved without finding a witness (e.g. as happens when un-
rolling an inductive definition with a quantified body), ¢ in the premise is a fresh
logical constant, and so x:=t is equivalent to x:=7.

As an example, suppose we want to generate arithmetic commands that
model the entailment 3k. Is”(a, NULL) A a # NULL + 3z, k. a — [next: x| *
lsk(x, NULL)Aa # NULL. We first introduce a new constant b for the existential
on the left, resulting in the formula Is®(a, NULL) Aa # NULL and the arithmetic
command b:=k. We then unroll the list segment predicate according to the
definition, obtaining 3z. a +— [next: x] * Is""*(x, NULL) A a # NULL. Since =
arises due to the expansion of a definition, we use nondeterministic assignment in
the generated command producing x:= 7. We then apply existential elimination
again, obtaining a — [next: ¢] % Is’(¢c, NULL) A a # NULL and c¢:=x. Finally,
we prove the formula on the right side of the entailment, obtaining witnesses for
the existentially quantified variables = (witness is ¢) and k (witness is b—1). We
then “forget” about the constants we added with the commands b:=7; c:=7.
Thus, the full sequence of commands for this entailment is

The updates to k here reflect the fact that, at this point in the execution, the
length of the list predicate being tracked by the shape analysis has decreased in
size by 1. Due to the commands b := ? and ¢ := 7, any quantifier free invariant
that holds after executing this sequence of commands will be expressed without
reference to b and c.

12



4.2 Precision

We can get a sense for the precision of this analysis by examining the places
in which nondeterministic assignment is used to over-approximate a command.
One such place is the rule for allocation. This should not concern us as the goal
is to use these arithmetic programs to discover properties of the integer values
involved in the program, whereas allocation returns a pointer value, which the
shape analysis is already capable of reasoning about. We can use this observation
to optimize our approach. If we keep track of type information we can ensure
that we only generate arithmetic commands when those commands result in the
update of integer-valued variables.

The other place where nondeterministic assignment occurs is in the rule for
existential elimination when the entailment checker does not return a witness.
This is actually the source of all imprecision in the arithmetic translation. It can
happen that an integer value such as 3 is stored in a list element, resulting in
the state

3k,d. x — [data: 3,next: k] x lssd(k:7 NULL)

If we then abstract this state to 3d. lsd(:lc7 NULL), we lose the information about
the value stored in the data field of the heap cell at x. If this field is accessed
again, it will be assigned a nondeterministic value by the shape analysis. To
remedy this would require a notion of refinement on the shape analysis side
of the procedure. And indeed our technique would interact well with such a
shape refinement system. One could interleave arithmetic refinement and shape
refinement, calling one when the other fails to disprove a counterexample. We
leave development of such a system for future work.

4.3 Combined Analysis

Using the translation of individual edges described above, we can define the
translation of ATSs:

Definition 4 (Translated arithmetic program) For an ATS A =
(Q,L,i, ~ ), the translated arithmetic program Tr(A) = (Q,L;i, ~' )
is an ATS defined such that if ¢ ~> ¢ and ¢ is the arithmetic command
associated with this edge, then we have q ~>' ¢ .

Finally, the results of the combined analysis are given by:

Definition 5 (Combination) Given an ATS A = (Q,L,., ~ ) and its
well-formed translation Tr(A) = (Q,L',t, ~' ), where L'(q) is a pure for-
mula for each g, the combination of A and Tr(A) is defined to be the ATS
A=(Q,L,t, ~ ) where if L(¢) = 3%. S and L'(q) = S’ then L(q) =3zZ. SAS".

Note that false A T is equivalent to false. So for an abstract state where the
shape analysis obtained T, indicating a potential safety violation, if an arithmetic
analysis can prove the state is unreachable (has invariant false), then it is also
unreachable in the combined analysis.
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5 Soundness

The soundness result hinges on the fact that the translation for commands de-
fined in Section 4 results in a quantifier-free approximation.

Theorem 1 For each postcondition rule in Figure 3 the associated arithmetic
command is a quantifier-free approximation of the original command.

Proof. See Appendix A.
Theorem 2 If3%. P+ 37. Q (c¢) and {P'} ¢ {Q'} then 3Z. PAP'F 37. QAQ'.
Proof. See Appendix B.

Given this we can show that results based on analyzing the arithmetic program
can be soundly conjoined to the formulas labeling states in the ATS.

Theorem 3 (Soundness) For an ATS A, suppose that we have run an arith-

metic analysis on Tr(A) and obtained (pure) invariants at each program point.
Then A is well-formed.

Proof. See Appendix C.

6 Experimental Results

We have developed a preliminary implementation of our analysis and tested it on
a number of programs where memory safety depends on relationships between
the lengths of the lists involved. For example, a function may depend on the fact
that the result of filtering a list has length less than or equal to that of the original
list. As arithmetic back-ends we have used OctAnal [22], Blast [19], and ARMC
[23]. Preliminary results show two trends. First, there is no tool among those we
tried that is strictly stronger than the others. That is, there is no tool among
these three that is able to prove memory safety for all of our sample programs.
However each program was able to be proven by some tool. In such cases, the
ability to choose any arithmetic tool allows one to prove the greatest number
of programs. Secondly, the performance characteristics of the tools are highly
dependent on the type of input they are given. As our examples are all relatively
small, OctAnal outperformed the tools based on model checking. However, for
large programs that contain many arithmetic commands which are not relevant
to proving memory safety, we would expect the relative performance of model
checking tools to improve, as these tools only consider the variables needed to
prove the property of interest. More experiments are necessary to fully explore
the advantages and disadvantages of various arithmetic provers in the context
of our combination procedure.

7 Related Work

The work presented here describes a way of lazily combining two abstract inter-
preters: the shape analysis produces abstracted versions of the input program for
which an arithmetic analysis is then called. More eager combination approaches
have been previously discussed in the literature (e.g. [11,17,18]).
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Recent work [6] has described a method in which the TVLA [26] shape anal-
ysis is lazily combined with an arithmetic analysis based on BrLasT. This work
reverses the strategy that we propose: they are lazily providing some additional
spatial support for what is primarily an arithmetic analysis, whereas we are lazily
providing additional arithmetic support for a shape analysis. Which approach
is better depends on the program in question. Programs that are concerned pri-
marily with integer calculations, but occasionally use a heap data structure may
be better analyzed with the approach in [6]. Programs which have as their main
function manipulation of heap data, or for which memory safety must be verified,
would be better analyzed with our approach.

Another related approach is the shape analysis in [21], which uses predicate
abstraction to retain facts about integer values during widening, but does not
provide a predicate inference scheme. Thus, these predicates must be supplied
by the user. Since our method uses a separate arithmetic tool to perform the
refinement, we inherit any predicate inference that tool may perform.

Connections between shape and arithmetic reasoning are exploited through-
out the literature (e.g. [1,15, 10, 8,28, 14]). Also, people have looked at ways of
combining abstract interpreters over different domains [11,17,18]. For example,
one could imagine combining the shape analysis in [21] or [13] with an abstract
interpretation over the domains of convex polyhedra [12] or octagons [22]. Our
approach has the advantage of allowing the use of any of these abstract domains
as well as arithmetic analyses that are not based on abstract interpretation. Fur-
thermore, given the way in which information about quantified values is shared
between the analyses, it is not clear that our approach can be seen as an instance
of one of the standard constructions for combinations of abstract domains.

Other shape analyses are known to support arithmetic reasoning, but typi-
cally in only very limited ways that allow them to use naive arithmetic widening
steps. For example, the shape analysis described in [4] provides a combined
analysis that maintains arithmetic information. In this case the set of arithmetic
variables in the abstract domain is extremely limited: each list-segment in the
shape analysis invariant is associated with an arithmetic variable. Furthermore,
only one inequality per variable is allowed, as the inequalties only occur between
a variable and its “old version”. Given these restrictions, the widening operation
in [4] can be naive in terms of its handling of arithmetic. Our refinement-based
procedure uses arbitrary arithmetic analysis tools to strengthen the shape anal-
ysis invariant being inferred, meaning that we have access to the most sophis-
ticated widening operations available. More arithmetic is supported in [9], but
also with an aggressive widening since the arithmetic reasoning is targeted to
within a loop body.

Another combination of shape and arithmetic is given in [25], which presents
a means of reasoning about size properties of data structures tracked via a shape
analysis based on reference counting and must-alias information.

A number of approaches based on combining a numerical analysis with a
shape analysis based on shape graphs (such as [26]) have been explored. Ex-
amples include [16] and [27]. However ours is the first attempt to carry out
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such general arithmetic reasoning in a shape analysis where the abstract domain
consists of separation logic formulas.

Our method makes use of a notion of generalized path (i.e. a path through the
program where the number of unrollings through some loops are unspecified).
Uses of this concept can be found elsewhere in the literature (e.g. [20,5]). In
particular, our work can be seen as fitting nicely into the framework proposed
in [5]. As in this work, we use a refinement procedure based upon analyzing
generalized paths. However, our work is unique in that the paths arise due to
a shape analysis based on abstract interpretation rather than a software model
checker. Furthermore, the way in which quantifiers in the generalized path are
expressed as variables in the translated path is not present in this other work.

8 Conclusion

Shape analyses are typically imprecise in their support for numerical reasoning.
While an analysis that fully tracks correlations between shape and arithmetic in-
formation would typically be overkill, we often need a small amount of arithmetic
information in shape analysis when arithmetic and spatial invariants interact.
We have proposed a lazy method of combining a fixed shape analysis with an
arbitrary arithmetic analysis. This method treats shape and arithmetic informa-
tion independently except for key relationships identified by the shape analysis.
Crucially, these relationships may be over values which are only present in the
abstract states. When potentially spurious counterexamples are reported by our
shape analysis, our method constructs a purely arithmetic program and uses
available invariant inference engines as a form of refinement. This new adaptive
analysis is useful when a proof of memory safety or assert-validity requires deep
spatial reasoning with targeted arithmetic support.
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A  Proof of Theorem 1

Theorem 1 For each postcondition rule in Figure 3 the associated arithmetic
command is a quantifier-free approximation of the original command.

Proof. We take as given that the postcondition rules are in fact sound (that
is, they are valid separation logic triples). This fact is proved in [21]. Here we
concentrate on the arithmetic commands being QFAs of the original commands.
We have one case for each type of command.
case ASSIGNMENT:
Given: {P'} z':=z; z:=FE[z'/z] {Q'}
Show: {3Z. PAP'} :=FE {32/, 2. x = E[z'/x] A P[z' /2] A Q'}
We can derive the conclusion from the rule of consequence applied to

{3Z. PAP'} x:= E {Jw,z. x = E[w/z] A Plw/x] A P'[w/z]} (2)
and
(3w, z. z = E[w/z] A Plw/x] A P'|w/x]) = (32',Z. © = E[2' /2] A P[2'/2]) A Q")

3)

The first premise is an instance of the postcondition rule for assignment and

follows from the fact that the postcondition rules are sound. The second (formula
3) we show now.

We start with our assumption
{P'} 2'i=x; v:=F2' /2] {Q'}
and take strongest postconditions of P with respect to the two commands, ob-
taining
{Fw. P'lw/z'| A2’ =z} 2:= B2 /2] {Q'}
and then

(Fz" w. (P'w/z'| N2’ = z)[2" /z] Nz = El2' Jz][z" |z]) = Q'
Pushing through the substitutions, we see that this formula is equivalent to
(I w. Plw/2[z" /z) N2’ = 2" ANz = El2'/z][2" /z]) = Q'
Since (Jy. ANz =y) < Alz/y], the formula above is equivalent to
Fw. (P'lw/a')a" /2] A& = Ela’ [a][z"/z]) [2'/2"]) = Q'
Pushing through the [2’/2"] substitution gives us

(P'[w/2][2" [2][’ [a"] A& = E[a’ /2][" [2][2' [2"]) = Q'
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The standard rules for composing substitutions tell us that
P'lw/a')" /22’ /"] = P'lw/a'[2’ /2] and Ela'/a)[a"/a][z'/2"] = Elx'/a]
(the second equality also uses the fact that =" does not occur in E). Rewriting
according to these equalities gives us

(Fw. P'lw/2'|[2'/z) Nz = B[z /x]) = Q'

Since A = B implies AANC = BAC and w ¢ fu(P[z'/z]), the formula above
implies

(Fw. P'lw/x'|[z'/z) A Pz’ /2] Nx = E[2/z]) = v = E[x'/x] A Pz’ /z] A Q'
Since A = B implies (Jz. A) = (Jz. B), we obtain
(3w, z. P'lw/2'|[2’ /x] AP[2' Jx] Az = E[2'/x]) = (3Z. © = E[2' /2] APz /2] \Q")
Existentially quantifying 2’ in the conclusion gives us
(Fw, Z. P'lw/2|[2’ /2] APz’ Jx]Ax = Elx'/x]) = (32, 2. x = E[2' /z]AP[2' /2]\Q")
This implies our goal, which is
(Fw, Z. P'lw/x] A Plw/x] Ao = Elw/z]) = (32',Z. x = E[2'/z] A P[2' /2] A Q")
as the antecendent in this case in strictly stronger.

case LOOKUP: This case is very similar to the assignment case as they both
use 7’ in the post-state to stand for the value of x in the pre-state.

Let @ stand for the formula z = F[z'/x] A (S % (E — [p,t: F]))[x’/z], which is
the postcondition of the lookup command.

Given: {P'} 2/:=x; x:=F[2'/z] {Q'}
Show: {3Z. (S* (E — [p,t: F])) AP} a:=[Et] {32/, 2. Q AN Q'}

Again, we use the rule of consequence and the fact that the postcondition rule
for lookup is sound to reduce this problem to showing that

(Fw,Z. ((S* (Ew— [p,t: F))) A P)[w/z) Nz = Flw/z]) = (32',2. QAN Q')

The reasoning is exactly the same as in the previous case. We need only substi-
tute (S * (E +— [p,t: F])) for P and F for FE in the proof of the previous case to
obtain a proof for this case.

case ALLOCATION:

Given: {P'} 2":=2; x:=7{Q’}
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Show: {32. S A P'} z:=alloc() {32. S[a'/z] * (x — []) AN Q'}
We reduce the problem, as before, to showing that
(37. [’ 2]+ (x> [ ) A P'la fa]) = (32. S[a’ fa] (& — [ ) A Q)

The reasoning is similar to the previous two cases. Working forward from our
assumption, we obtain

{Fw. P'lw/z'| Na' =2} 2:=7{Q'}

followed by
32" w. Plw/2'|[z" /) A2’ = 2" = @

which is equivalent to
Jw. P'lw/a2'][2" /2] = Q'

We then add S[z’/z] * (x +— [ ]) to each side, obtaining
(S[2'/x] * (@ = []) A Guw. P'lw/a’)z"/2]) = (S’ /]« (z = [])) A Q'

which implies our goal.

case FREE:
Given: {P'} e {Q'}
Show: {3Z. (S * (E+ p)) A P'} free(E) {32. SAQ'}
From our assumption, since € is the empty command, we know that
% (4)

To show our goal, the Hoare logic rule for existentials tells us that it suffices to
show

{(S* (B p) A P'} free(E) {SAQ'} (5)

Since P’ is pure, this is equivalent to
[(SAP')+ (B p)} free(E) {S A Q')

which is true if
SAP = SAQ

which follows directly from equation 4.

case STORE:
Given: {P'} e {Q'}
Show: {3Z. (S*(E — [p,t: G])) AP’} [Et]:=F {3Z. (S*(E — [p,t: F])) NQ'}
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As for the free command, we obtain the following formula from our assumption
P'=qQ (6)
By the postcondition rule for [E.t]:= F we have
{32. (S*(Ew— [p,t: G)) AP} [Et]:=F {32. (Sx (E ~ [p,t: F])) AP’}
Weakening the consequent according to equation 6 gives us
{3Z2. (S*(Ew [p,t: G))ANP'} [Et]:=F {32. (Sx (E~ [p,t: F])) ANQ'}

which was our goal.

case ASSUME:
Given: {P'} assume(R) {Q'}
Show: {3Z. S A P'} assume(R) {32. SARAQ'}
From our assumption, we have
PAR=Q
The postcondition for assume(R) gives us
{3Z. S A P'} assume(R) {3Z. SA P' AR}
This together with the implication above yields
{37. S} assume(P) {32. SAQ'}

which is our goal.

B Proof of Theorem 2

Theorem 2 If3%. P+ 3y. Q {(c¢) and {P'} ¢ {Q’'} then 3Z. PAP' F 3y. QA Q.
Proof. We proceed via induction on the length of the derivation of 3%. P +
37. Q (c). We have one case for each inference rule in our system.

case E-INTRO:

Our inductive hypothesis is: if {P'} ¢/ {Q'} then 5. PA P+ 32Z. Q[t/z] AN Q.
Assume: {P'} x:=t; ¢ {Q'}

Show: 3. PAP' +3z,Z. QA Q'
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We take the strongest postcondition of P’ with respect to z:=¢ to obtain
{Fw. P'lw/z] Az =tw/z]} ¢ {Q'}
Since x does not occur in ¢ (x is fresh), this reduces to
{Fw. P'lw/z)ne =t} {Q'}

Applying the Hoare logic rule for variable substitution (substituting ¢ for x) then
gives us

{Fw. P'lw/z) "t =1t} {Q'[t/z]}
Again, we have used the fact that = does not appear t or in ¢’ (x is chosen to be
fresh). This formula is equivalent to

{Fw. P'lw/x]} " {Q'[t/x]}
Applying our inductive hypothesis gives us
7. P A (Bw. P'lw/x)) 37, Q[t/z]) A Q'[t/x]
Strengthening the antecedent gives us
dy. PA PR32 Q[t/x] AQ'[t/x)
Applying the rule for existential introduction then gives
Jy. PAP F32,Z. QN Q'

which is our goal.

case E-ELIM:
Our inductive hypothesis is: if {P'} ¢/ {Q'} then 3g. Pla/z] AP 'F3Z. QA Q.

Assume:

{P'Ya=x; 5 a=7{Q"}
Show: 3z, 5. PAP' FZ. QAQ’
From our assumption, we take the strongest postcondition of P’ to obtain
{3d’. P'ld' Ja]Na=x} 5 a:=7{Q"}
We then take the weakest precondition of Q' to obtain
{3d'. P'ld'Ja] ANa=x} ¢ {Va. Q"}
Applying our inductive hypothesis gives us

3y. Pla/x] A3Ja’. P'la’Jal| Na =2+ 3Z. Q AVa. Q'
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universally quantifying a yields

Va. (3. Pla/z)A3Jd’. P'la'/a] Na=xF 3Z. Q AVa. Q')
or equivalently,

(3a,q. Pla/z) A3d’. P'ld’Ja) Na=x)F3Z. Q AVa. Q'
rewriting to eliminate the existential on a produces
3¢. Pla/z][xz/a] A 3a’. P'ld’'/a][z/a] F 3Z. Q AVa. Q'
Simplifying gives us
Jy. PA3d. P'ld'/a] F3Z. Q AVa. Q'
Instantiating the Va gives
(Fy. PA3d'. P'ld'/a]) F3Z. QAN Q'

which implies our goal.

case INIT:

The base case is the init rule
INIT

PEP ()

We assume that {Q} € {Q'}. That is, Q - Q. We must show that PAQ F PAQ'.

This follows immediately from our assumptions.

C Proof of Theorem 3

Theorem 3 (Soundness) For an ATS A, suppose that we have run an arith-
metic analysis on Tr(A) and obtained (pure) invariants at each program point.

Then A is well-formed.

Proof. This follows directly from the fact that the ¢’ commands are QFAs of
the original edges. Let ¢ ~5 ¢ be any edge in A. Suppose L(g) = 37. P and
L(¢') =3y. Q. Then L(q) = 3%. PAL'(¢) and L(¢') = 37. Q@ A L'(¢"). We must

show that the following triple holds

(3. PAL (@)} ¢ {37. QA L'(¢)}

Let ¢’ be the arithmetic command associated with this edge in A’. Since
{L'(q)} ¢ {L'(¢")} and ¢’ is a QFA of {3Z. P} ¢ {37. Q}, our goal follows

immediately from the definition of QFA.

23



