The Calculus of Computation

Aaron R. Bradley - Zohar Manna

The Calculus
of Computation

Decision Procedures
with Applications to Verification

With 60 Figures

@ Springer

Authors

Aaron R. Bradley

Zohar Manna

Gates Building, Room 481
Stanford University
Stanford, CA 94305

USA

arbrad@cs.stanford.edu
manna@cs.stanford.edu

Library of Congress Control Number: 2007932679
ACM Computing Classification (1998): B.8, D.1, D.2, E.1, E1, E3, F4, G.2, 1.1, 1.2

ISBN 978-3-540-74112-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting by the authors
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover design: KiinkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3180/YL-543210

To my wife,
Sarah

AR.B.

To my grandchildren,
Itar

Maya
Ori

Z.M.

Preface

Logic is the calculus of computation. Forty-five years ago, John McCarthy
predicted in A Basis for a Mathematical Theory of Computation that “the
relationship between computation and mathematical logic will be as fruitful in
the next century as that between analysis and physics in the last”. The field of
computational logic emerged over the past few decades in partial fulfillment
of that vision. Focusing on producing efficient and powerful algorithms for
deciding the satisfiability of formulae in logical theories and fragments, it
continues to push the frontiers of general computer science.

This book is about computational logic and its applications to program
verification. Program verification is the task of analyzing the correctness of a
program. It encompasses the formal specification of what a program should do
and the formal proof that the program meets this specification. The reasoning
power that computational logic offers revolutionized the field of verification.
Ongoing research will make verification standard practice in software and
hardware engineering in the next few decades. This acceptance into everyday
engineering cannot come too soon: software and hardware are becoming ever
more ubiquitous and thus ever more the source of failure.

We wrote this book with an undergraduate and beginning graduate audi-
ence in mind. However, any computer scientist or engineer who would like to
enter the field of computational logic or apply its products should find this
book useful.

Content

The book has two parts. Part I, Foundations, presents first-order logic, induc-
tion, and program verification. The methods are general. For example, Chap-
ter 2 presents a complete proof system for first-order logic, while Chapter 5
describes a relatively complete verification methodology. Part II, Algorithmic
Reasoning, focuses on specialized algorithms for reasoning about fragments of
first-order logic and for deducing facts about programs. Part II trades gener-
ality for decidability and efficiency.

VIII Preface

The first three chapters of Part I introduce first-order logic. Chapters 1 and
2 begin our presentation with a review of propositional and predicate logic.
Much of the material will be familiar to the reader who previously studied
logic. However, Chapter 3 on first-order theories will be new to many readers.
It axiomatically defines the various first-order theories and fragments that we
study and apply throughout the rest of the book. Chapter 4 reviews induction,
introducing some forms of induction that may be new to the reader. Induction
provides the mathematical basis for analyzing program correctness.

Chapter 5 turns to the primary motivating application of computational
logic in this book, the task of verifying programs. It discusses specification, in
which the programmer formalizes in logic the (sometimes surprisingly vague)
understanding that he has about what functions should do; partial correctness,
which requires proving that a program or function meets a given specification
if it halts; and total correctness, which requires proving additionally that a pro-
gram or function always halts. The presentation uses the simple programming
language pi and is supported by the verifying compiler 7VC (see The 7VC
System, below, for more information on 7VC). Chapter 6 suggests strategies
for applying the verification methodology.

Part II on Algorithmic Reasoning begins in Chapter 7 with quantifier-
elimination methods for limited integer and rational arithmetic. It describes
an algorithm for reducing a quantified formula in integer or rational arithmetic
to an equivalent formula without quantifiers.

Chapter 8 begins a sequence of chapters on decision procedures for
quantifier-free and other fragments of theories. These fragments of first-order
theories are interesting for three reasons. First, they are sometimes decidable
when the full theory is not (see Chapters 9, 10, and 11). Second, they are
sometimes efficiently decidable when the full theory is not (compare Chapters
7 and 8). Finally, they are often useful; for example, proving the verification
conditions that arise in the examples of Chapters 5 and 6 requires just the
fragments of theories studied in Chapters 8-11. The simplex method for linear
programming is presented in Chapter 8 as a decision procedure for deciding
satisfiability in rational and real arithmetic without multiplication.

Chapters 9 and 11 turn to decision procedures for non-arithmetical theo-
ries. Chapter 9 discusses the classic congruence closure algorithm for equality
with uninterpreted functions and extends it to reason about data structures
like lists, trees, and arrays. These decision procedures are for quantifier-free
fragments only. Chapter 11 presents decision procedures for larger fragments
of theories that formalize array-like data structures.

Decision procedures are most useful when they are combined. For example,
in program verification one must reason about arithmetic and data structures
simultaneously. Chapter 10 presents the Nelson-Oppen method for combining
decision procedures for quantifier-free fragments. The decision procedures of
Chapters 8, 9, and 11 are all combinable using the Nelson-Oppen method.

Chapter 12 presents a methodology for constructing invariant generation
procedures. These procedures reason inductively about programs to aid in

@ Preface IX
0 QP
S

@

Verification Decision procedures

Fig. 0.1. The chapter dependency graph

verification. They relieve some of the burden on the programmer to provide
program annotations for verification purposes. For now, developing a static
analysis is one of the easiest ways of bringing formal methods into general
usage, as a typical static analysis requires little or no input from the pro-
grammer. The chapter presents a general methodology and two instances of
the method for deducing arithmetical properties of programs.

Finally, Chapter 13 suggests directions for further reading and research.

Teaching

This book can be used in various ways and taught at multiple levels. Figure
0.1 presents a dependency graph for the chapters. There are two main tracks:
the wverification track, which focuses on Chapters 14, 5, 6, and 12; and the
decision procedures track, which focuses on Chapters 1-4 and 7-11. Within
the decision procedures track, the reader can focus on the quantifier-free de-
cision procedures track, which skips Chapters 7 and 11. The reader interested
in quickly obtaining an understanding of modern combination decision proce-
dures would prefer this final track.

We have annotated several sections with a * to indicate that they provide
additional depth that is unnecessary for understanding subsequent material.
Additionally, all proofs may be skipped without preventing a general under-
standing of the material.

Each chapter ends with a set of exercises. Some require just a mechanical
understanding of the material, while others require a conceptual understand-
ing or ask the reader to think beyond what is presented in the book. These
latter exercises are annotated with a *. For certain audiences, additional exer-
cises might include implementing decision procedures or invariant generation
procedures and exploring certain topics in greater depth (see Chapter 13).

In our courses, we assign program verification exercises from Chapters 5
and 6 throughout the term to give students time to develop this important
skill. Learning to verify programs is about as difficult for students as learning

X Preface

to program in the first place. Specifying and verifying programs also strength-
ens the students’ facility with logic.

Bibliographic Remarks

Each chapter ends with a section entitled Bibliographic Remarks in which
we attempt to provide a brief account of the historical context and develop-
ment of the chapter’s material. We have undoubtedly missed some important
contributions, for which we apologize. We welcome corrections, comments,
and historical anecdotes.

The wVC System

We implemented a verifying compiler called mVC to accompany this text. It
allows users to write and verify annotated programs in the pi programming
language. The system and a set of examples, including the programs listed in
this book, are available for download from http://theory.stanford.edu/
~arbrad/pivc. We plan to update this website regularly and welcome readers’
comments, questions, and suggestions about 7VC and the text.

Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under Grant Nos. CSR-0615449 and CNS-0411363 and by Navy/ONR
contract N00014-03-1-0939. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation or the
Navy/ONR. The first author received additional support from a Sang Samuel
Wang Stanford Graduate Fellowship.

We thank the following people for their comments throughout the writ-
ing of this book: Miquel Bertran, Andrew Bradley, Susan Bradley, Chang-
Seo Park, Caryn Sedloff, Henny Sipma, Matteo Slanina, Sarah Solter, Fabio
Somenzi, Tomas Uribe, the students of CS156, and Alfred Hofmann and the
reviewers and editors at Springer. Their suggestions helped us to improve
the presentation substantially. Remaining errors and shortcomings are our
responsibility.

Stanford University, Aaron R. Bradley
June 2007 Zohar Manna

Contents

Part T Foundations

1

Propositional Logic i 3
1.1 Symbax ..o 4
1.2 SemantiCsottt 6
1.3 Satisfiability and Validity i i 8
1.3.1 Truth Tables. i i 9
1.3.2 Semantic Arguments.......... i 10
1.4 Equivalence and Implication 14
1.5 Substitutioniiiii 16
1.6 Normal Forms i 18
1.7 Decision Procedures for Satisfiability 21
1.7.1 Simple Decision Procedures......................... 21
1.7.2 Reconsidering the Truth-Table Method............... 22
1.7.3 Conversion to an Equisatisfiable Formula in CNF. 24
1.7.4 The Resolution Procedure 27
1.7.5 DPLL. ..o 28
1.8 SUMIMATY .« .ttt 31
Bibliographic Remarks....... i 32
ExXercises ... 32
First-Order Logic i 35
2.1 SYMbAX .o 35
2.2 SemantiCs 39
2.3 Satisfiability and Validity 42
2.4 Substitution 45
2.4.1 Safe Substitution L. 47
2.4.2 Schema Substitution 48
2.5 Normal Forms 51
2.6 Decidability and Complexity 53

2.6.1 Satisfiability as a Formal Language 53

XII

Contents
2.6.2 Decidability 54
2.6.3 *Complexityoiiiii 54
2.7 *Meta-Theorems of First-Order Logic 56
2.7.1 Simplifying the Language of FOL.................... 57
2.7.2 Semantic Argument Proof Rules.................. ... 58
2.7.3 Soundness and Completeness 58
2.7.4 Additional Theoremsccviiniininnon.. 61
2.8 SUMMATY . ¢ vttt ettt e e e e 66
Bibliographic Remarks. i 67
EXercises 67
First-Order Theories.......... o .. 69
3.1 First-Order Theories, 69
3.2 Equality.o 71
3.3 Natural Numbers and Integers 73
3.3.1 Peano Arithmetic 73
3.3.2 Presburger Arithmetic, 75
3.3.3 Theory of Integers 76
3.4 Rationalsand Reals 79
3.4.1 Theoryof Reals 80
3.4.2 Theory of Rationals 82
3.5 Recursive Data Structures 84
3.6 ATTAYS .ottt 87
3.7 *Survey of Decidability and Complexity 90
3.8 Combination Theories.......... 91
3.9 SUIMATY . . ottt 92
Bibliographic Remarks. i 93
EXercises ... 93
Induction 95
4.1 Stepwise Induction 95
4.2 Complete Induction. i 99
4.3 Well-Founded Induction 102
4.4 Structural Induction 108
4.5 SUIIMATY . . ottt e e e e e e e 110
Bibliographic Remarks. i 111
EXercises ... 111
Program Correctness: Mechanics 113
5.1 pi: A Simple Imperative Language 114
5.1.1 The Languaget .. 115
5.1.2 Program Annotations 118
5.2 Partial Correctness i 123
5.2.1 Basic Paths: Loops i 125

5.2.2 Basic Paths: Function Calls. 131

Contents XIII

5.2.3 Program States il 135
5.2.4 Verification Conditions 136
5.2.5 P-Invariant and P-Inductive 142
5.3 Total Correctness.ovvviit it 143
B4 SUMMATY . o .o et et ettt e e e e e e e e 149
Bibliographic Remarks....... i 150
Exercises ... 151
Program Correctness: Strategies........................... 153
6.1 Developing Inductive Annotations 153
6.1.1 BasicFacts 154
6.1.2 The Precondition Method 156
6.1.3 A Strategyo 162
6.2 Extended Example: QuickSort 164
6.2.1 Partial Correctness 167
6.2.2 Total Correctness 171
6.3 SUIMMATY . . oottt 172
Bibliographic Remarks. 173
Exercises 173

Part II Algorithmic Reasoning

7

Quantified Linear Arithmetic 183
7.1 Quantifier Elimination 184
7.1.1 Quantifier Elimination 184
7.1.2 A Simplification 185
7.2 Quantifier Elimination over Integers 185
7.2.1 Augmented Theory of Integers 185
7.2.2 Cooper’s Method i, 187
7.2.3 A Symmetric Elimination 194
7.2.4 Eliminating Blocks of Quantifiers................. ... 195
7.2.5 *Solving Divides Constraints 196
7.3 Quantifier Elimination over Rationals 200
7.3.1 Ferrante and Rackoff’s Method 200
T4 XComplexityttt 204
75 SUMMATY . .ottt ettt e e e et 204
Bibliographic Remarks. i 205
EXercises 205
Quantifier-Free Linear Arithmetic 207
8.1 Decision Procedures for Quantifier-Free Fragments........... 207
8.2 Preliminary Concepts and Notation........................ 209
8.3 Linear Programs i 213

8.4 The Simplex Method 218

XIV

10

11

Contents
8.4.1 From M to Mo.o 219
8.4.2 Vertex Traversal 223
8.4.3 XCompIexityovviiii 237
8.5 SUMMATIY . . oottt 237
Bibliographic Remarks. 238
EXercises 238
Quantifier-Free Equality and Data Structures.............. 241
9.1 Theory of Equality i, 242
9.2 Congruence Closure Algorithm 244
9.2.1 Relations........ ... 245
9.2.2 Congruence Closure Algorithm 247
9.3 Congruence Closure with DAGs 251
9.3.1 Directed Acyclic Graphs 251
9.3.2 Basic Operationsoiiiiinineinan . 254
9.3.3 Congruence Closure Algorithm 255
9.3.4 Decision Procedure for Tg-Satisfiability............... 256
9.3.5 *Complexityc.oiiiiiii 258
9.4 Recursive Data Structures 259
0.5 ATTAYS . oot 263
9.6 SUIMIMATY . . ottt et e 265
Bibliographic Remarks. i 266
Exercises 267
Combining Decision Procedures 269
10.1 Combining Decision Procedures 269
10.2 Nelson-Oppen Method: Nondeterministic Version 271
10.2.1 Phase 1: Variable Abstraction....................... 271
10.2.2 Phase 2: Guess and Check 273
10.2.3 Practical Efficiency i i 274
10.3 Nelson-Oppen Method: Deterministic Version 276
10.3.1 Convex Theories i, 276
10.3.2 Phase 2: Equality Propagation 278
10.3.3 Equality Propagation: Implementation 282
10.4 *Correctness of the Nelson-Oppen Method 283
10.5 XComPlexityottt 287
10.6 SUMIMATY . ¢ . v ettt ettt et e 288
Bibliographic Remarks. 288
EXercises 288
ATTaYS . oo 291
11.1 Arrays with Uninterpreted Indices 292
11.1.1 Array Property Fragment 292
11.1.2 Decision Procedure i 294

11.2 Integer-Indexed Arraysooiiuiiiiiiininenaenn.. 299

Contents XV

11.2.1 Array Property Fragment 300

11.2.2 Decision Procedure, 301

11.3 Hashtables. 304
11.3.1 Hashtable Property Fragment 305

11.3.2 Decision Procedure 306

11.4 Larger Fragments.............. i, 308
115 SUMINATY .« ¢ o oe ettt e et e e e e e e e e 309
Bibliographic Remarks....... o 310
EXercisest 310

12 Invariant Generation 311
12.1 Invariant Generationc.o.iiiiiiiiienenn.. 311
12.1.1 Weakest Precondition and Strongest Postcondition 312

12.1.2 *General Definitions of wp and sp................... 315

12.1.3 Static Analysis........ .. . i 316

12.1.4 Abstraction....... 319

12.2 Interval Analysis i 325
12.3 Karr’s Analysis.ooo i 333
12.4 *Standard Notation and Concepts......................... 341
12.5 SUMIMATY . o .o ettt e e e e e e e 344
Bibliographic Remarks....... i 345
EXErcises 345

13 Further Reading 347
References. 351

