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Preface

Logic is the calculus of computation. Forty-five years ago, John McCarthy
predicted in A Basis for a Mathematical Theory of Computation that “the
relationship between computation and mathematical logic will be as fruitful in
the next century as that between analysis and physics in the last”. The field of
computational logic emerged over the past few decades in partial fulfillment
of that vision. Focusing on producing efficient and powerful algorithms for
deciding the satisfiability of formulae in logical theories and fragments, it
continues to push the frontiers of general computer science.

This book is about computational logic and its applications to program
verification. Program verification is the task of analyzing the correctness of a
program. It encompasses the formal specification of what a program should do
and the formal proof that the program meets this specification. The reasoning
power that computational logic offers revolutionized the field of verification.
Ongoing research will make verification standard practice in software and
hardware engineering in the next few decades. This acceptance into everyday
engineering cannot come too soon: software and hardware are becoming ever
more ubiquitous and thus ever more the source of failure.

We wrote this book with an undergraduate and beginning graduate audi-
ence in mind. However, any computer scientist or engineer who would like to
enter the field of computational logic or apply its products should find this
book useful.

Content

The book has two parts. Part I, Foundations, presents first-order logic, induc-
tion, and program verification. The methods are general. For example, Chap-
ter 2 presents a complete proof system for first-order logic, while Chapter 5
describes a relatively complete verification methodology. Part II, Algorithmic
Reasoning, focuses on specialized algorithms for reasoning about fragments of
first-order logic and for deducing facts about programs. Part II trades gener-
ality for decidability and efficiency.
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The first three chapters of Part I introduce first-order logic. Chapters 1 and
2 begin our presentation with a review of propositional and predicate logic.
Much of the material will be familiar to the reader who previously studied
logic. However, Chapter 3 on first-order theories will be new to many readers.
It axiomatically defines the various first-order theories and fragments that we
study and apply throughout the rest of the book. Chapter 4 reviews induction,
introducing some forms of induction that may be new to the reader. Induction
provides the mathematical basis for analyzing program correctness.

Chapter 5 turns to the primary motivating application of computational
logic in this book, the task of verifying programs. It discusses specification, in
which the programmer formalizes in logic the (sometimes surprisingly vague)
understanding that he has about what functions should do; partial correctness,
which requires proving that a program or function meets a given specification
if it halts; and total correctness, which requires proving additionally that a pro-
gram or function always halts. The presentation uses the simple programming
language pi and is supported by the verifying compiler 7VC (see The 7VC
System, below, for more information on 7VC). Chapter 6 suggests strategies
for applying the verification methodology.

Part II on Algorithmic Reasoning begins in Chapter 7 with quantifier-
elimination methods for limited integer and rational arithmetic. It describes
an algorithm for reducing a quantified formula in integer or rational arithmetic
to an equivalent formula without quantifiers.

Chapter 8 begins a sequence of chapters on decision procedures for
quantifier-free and other fragments of theories. These fragments of first-order
theories are interesting for three reasons. First, they are sometimes decidable
when the full theory is not (see Chapters 9, 10, and 11). Second, they are
sometimes efficiently decidable when the full theory is not (compare Chapters
7 and 8). Finally, they are often useful; for example, proving the verification
conditions that arise in the examples of Chapters 5 and 6 requires just the
fragments of theories studied in Chapters 8-11. The simplex method for linear
programming is presented in Chapter 8 as a decision procedure for deciding
satisfiability in rational and real arithmetic without multiplication.

Chapters 9 and 11 turn to decision procedures for non-arithmetical theo-
ries. Chapter 9 discusses the classic congruence closure algorithm for equality
with uninterpreted functions and extends it to reason about data structures
like lists, trees, and arrays. These decision procedures are for quantifier-free
fragments only. Chapter 11 presents decision procedures for larger fragments
of theories that formalize array-like data structures.

Decision procedures are most useful when they are combined. For example,
in program verification one must reason about arithmetic and data structures
simultaneously. Chapter 10 presents the Nelson-Oppen method for combining
decision procedures for quantifier-free fragments. The decision procedures of
Chapters 8, 9, and 11 are all combinable using the Nelson-Oppen method.

Chapter 12 presents a methodology for constructing invariant generation
procedures. These procedures reason inductively about programs to aid in
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verification. They relieve some of the burden on the programmer to provide
program annotations for verification purposes. For now, developing a static
analysis is one of the easiest ways of bringing formal methods into general
usage, as a typical static analysis requires little or no input from the pro-
grammer. The chapter presents a general methodology and two instances of
the method for deducing arithmetical properties of programs.

Finally, Chapter 13 suggests directions for further reading and research.

Teaching

This book can be used in various ways and taught at multiple levels. Figure
0.1 presents a dependency graph for the chapters. There are two main tracks:
the wverification track, which focuses on Chapters 14, 5, 6, and 12; and the
decision procedures track, which focuses on Chapters 1-4 and 7-11. Within
the decision procedures track, the reader can focus on the quantifier-free de-
cision procedures track, which skips Chapters 7 and 11. The reader interested
in quickly obtaining an understanding of modern combination decision proce-
dures would prefer this final track.

We have annotated several sections with a * to indicate that they provide
additional depth that is unnecessary for understanding subsequent material.
Additionally, all proofs may be skipped without preventing a general under-
standing of the material.

Each chapter ends with a set of exercises. Some require just a mechanical
understanding of the material, while others require a conceptual understand-
ing or ask the reader to think beyond what is presented in the book. These
latter exercises are annotated with a *. For certain audiences, additional exer-
cises might include implementing decision procedures or invariant generation
procedures and exploring certain topics in greater depth (see Chapter 13).

In our courses, we assign program verification exercises from Chapters 5
and 6 throughout the term to give students time to develop this important
skill. Learning to verify programs is about as difficult for students as learning
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to program in the first place. Specifying and verifying programs also strength-
ens the students’ facility with logic.

Bibliographic Remarks

Each chapter ends with a section entitled Bibliographic Remarks in which
we attempt to provide a brief account of the historical context and develop-
ment of the chapter’s material. We have undoubtedly missed some important
contributions, for which we apologize. We welcome corrections, comments,
and historical anecdotes.

The wVC System

We implemented a verifying compiler called mVC to accompany this text. It
allows users to write and verify annotated programs in the pi programming
language. The system and a set of examples, including the programs listed in
this book, are available for download from http://theory.stanford.edu/
~arbrad/pivc. We plan to update this website regularly and welcome readers’
comments, questions, and suggestions about 7VC and the text.
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