Skip to main content

RNA Folding Including Pseudoknots: A New Parameterized Algorithm and Improved Upper Bound

  • Conference paper
Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

Abstract

Predicting the secondary structure of an RNA sequence is an important problem in structural bioinformatics. The general RNA folding problem, where the sequence to be folded may contain pseudoknots, is computationally intractable when no prior knowledge on the pseudoknot structures the sequence contains is available. In this paper, we consider stable stems in an RNA sequence and provide a new characterization for its stem graph, a graph theoretic model that has been used to describe the overlapping relationships for stable stems. Based on this characterization, we identify a new structure parameter for a stem graph. We call this structure parameter crossing width. We show that given a sequence with crossing width c for its stem graph, the general RNA folding problem can be solved in time O(2c k 3 n 2), where n is the length of the sequence, k is the maximum length of stable stems. Moreover, this characterization leads to an \(O(2^{(1+2k^2)n}n^{2}k^{3})\) time algorithm for the general RNA folding problem where the lengths of stems in the sequence are at most k, this result improves the upper bound of the problem to 2O(n) n 2 when the maximum stem length is bounded by a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, J., van den Berg, M., van Batenburg, E., Pleij, C.: Prediction of RNA secondary structure including pseudoknotting, by computer simulation. Nucleic Acids Research 18, 3035–3044 (1990)

    Article  Google Scholar 

  2. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J., Strobel, S.A.: Crystal structure of a self-splicing group i intron with both exons. Nature 430, 4550 (2004)

    Article  Google Scholar 

  3. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: Dynamic programming algorithms on graphs with bounded tree-width. In: Lepistö, T., Salomaa, A. (eds.) Automata, Languages and Programming. LNCS, vol. 317, pp. 105–119. Springer, Heidelberg (1988)

    Google Scholar 

  5. Cai, L., Malmberg, R.L., Wu, Y.: Stochastic modeling of pseudoknotted structures: a grammatical approach. In: Proceedings of the 11th International Conference on Intelligent Systems for Molecular Biology, pp. 66–73 (2003)

    Google Scholar 

  6. Chen, J.-H., Le, S.-Y., Maize, J.V.: Prediction of common secondary structures of RNAs: a genetic algorithm approach. Nucleic Acids Research 28(4), 991–999 (2000)

    Article  Google Scholar 

  7. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian Journal of Mathematics 16(99), 539–548 (1964)

    MATH  MathSciNet  Google Scholar 

  8. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33, D121–D124 (2005)

    Article  Google Scholar 

  9. Ke, A., Zhou, K., Ding, F., Gate, J.H., Doudna, J.A.: A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004)

    Article  Google Scholar 

  10. Lyngso, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational Biology 7(3-4), 409–427 (2000)

    Article  Google Scholar 

  11. Available at: http://www.bioinfo.rpi.edu/zukerm/rna/energy/node2.html#SECTION20

  12. Nussinov, R., Pieczenik, G., Griggs, J., Kleitman, D.: Algorithms for loop matchings. SIAM Journal of Applied Mathematics 35, 68–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reeder, J., Giegerich, R.: Design, Implementation and Evaluation of A Practical Pseudoknot Folding Algorithm Based on Thermodynamics. BMC Bioinformatics 5, 104 (2004)

    Article  Google Scholar 

  14. Ren, J., Rastegart, B., Condon, A., Hoos, H.H.: HotKnots: Heuristic prediction of RNA structures including pseudoknots. RNA 11, 1194–1504 (2005)

    Article  Google Scholar 

  15. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285, 2053–2068 (1999)

    Article  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph Minors II: Algorithmic aspects of tree width. Journal of Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruan, J., Stormo, G.D., Zhang, W.: An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20(1), 58–66 (2004)

    Article  Google Scholar 

  18. Schimmel, P.: RNA pseudoknots that interact with components of the translation apparatus. Cell 58(1), 9–12 (1989)

    Article  Google Scholar 

  19. Tabaska, J., Gary, R., Gabow, H., Stormo, G.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)

    Article  Google Scholar 

  20. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

  22. Zhao, J., Malmberg, R.L., Cai, L.: Rapid ab initio RNA folding including pseudoknots via graph tree decomposition. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 262–273. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, C., Song, Y., Shapiro, L. (2007). RNA Folding Including Pseudoknots: A New Parameterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics