Skip to main content

A Novel Method for Signal Transduction Network Inference from Indirect Experimental Evidence

  • Conference paper
Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

Abstract

In this paper we introduce a new method of combined synthesis and inference of biological signal transduction networks. A main idea of our method lies in representing observed causal relationships as network paths and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. Our contributions are twofold: on the theoretical and algorithmic side, we formalize our approach, study its computational complexity and prove new results for exact and approximate solutions of the computationally hard transitive reduction substep of the approach. On the application side, we validate the biological usability of our approach by successfully applying it to a previously published signal transduction network by Li et al. [20] and show that our algorithm for the transitive reduction substep performs well on graphs with a structure similar to those observed in transcriptional regulatory and signal transduction networks.

A full version of this paper will appear in Journal of Computational Biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM Journal of Computing 1(2), 131–137 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alberts, B.: Molecular biology of the cell. Garland Pub., New York (1994)

    Google Scholar 

  4. Albert, R., DasGupta, B., Dondi, R., Sontag, E.: Inferring (Biological) Signal Transduction Networks via Transitive Reductions of Directed Graphs, Algorithmica (to appear)

    Google Scholar 

  5. Carter, G.W.: Inferring network interactions within a cell. Briefings in Bioinformatics 6(4), 380–389 (2005)

    Article  Google Scholar 

  6. Chen, T., Filkov, V., Skiena, S.: Identifying Gene Regulatory Networks from Experimental Data. In: Proc. of third RECOMB, pp. 94–103 (1999)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. DasGupta, B., Enciso, G.A., Sontag, E.D., Zhang, Y.: Algorithmic and Complexity Results for Decompositions of Biological Networks into Monotone Subsystems. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 253–264. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Filkov, V.: Identifying Gene Regulatory Networks from Gene Expression Data. In: Aluru, S. (ed.) Handbook of Computational Molecular Biology, Chapman & Hall/CRC Press, Sydney, Australia (2005)

    Google Scholar 

  10. Frederickson, G.N., JàJà, J.: Approximation algorithms for several graph augmentation problems. SIAM Journal of Computing 10(2), 270–283 (1981)

    Article  MATH  Google Scholar 

  11. Giot, L., Bader, J.S., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)

    Article  Google Scholar 

  12. Han, J.D., Bertin, N., et al.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93 (2004)

    Article  Google Scholar 

  13. Heinrich, R., Schuster, S.: The regulation of cellular systems. Chapman & Hall, New York (1996)

    MATH  Google Scholar 

  14. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  15. Jong, H.D.: Modelling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  16. Khuller, S., Raghavachari, B., Young, N.: Approximating the minimum equivalent digraph. SIAM Journal of Computing 24(4), 859–872 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khuller, S., Raghavachari, B., Young, N.: On strongly connected digraphs with bounded cycle length. Discrete Applied Mathematics 69(3), 281–289 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lee, T.I., Rinaldi, N.J., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  19. Li, S., Armstrong, C.M., et al.: A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004)

    Article  Google Scholar 

  20. Li, S., Assmann, S.M., Albert, R.: Predicting Essential Components of Signal Transduction Networks: A Dynamic Model of Guard Cell Abscisic Acid Signaling. PLoS Biology 4(10) (October 2006)

    Google Scholar 

  21. Ma’ayan, A., et al.: Formation of Regulatory Patterns During Signal Propagation in a Mammalian Cellular Network. Science 309(5737), 1078–1083 (2005)

    Article  Google Scholar 

  22. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 26118–26134 (2001)

    Article  Google Scholar 

  23. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31, 64–68 (2002)

    Article  Google Scholar 

  24. Vetta, A.: Approximating the minimum strongly connected subgraph via a matching lower bound. In: 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 417-426 (2001)

    Google Scholar 

  25. Wagner, A.: Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data. Genome Research 12, 309–315 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albert, R. et al. (2007). A Novel Method for Signal Transduction Network Inference from Indirect Experimental Evidence . In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics