Skip to main content

An Analysis of Case-Based Value Function Approximation by Approximating State Transition Graphs

  • Conference paper
Book cover Case-Based Reasoning Research and Development (ICCBR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4626))

Included in the following conference series:

Abstract

We identify two fundamental points of utilizing CBR for an adaptive agent that tries to learn on the basis of trial and error without a model of its environment. The first link concerns the utmost efficient exploitation of experience the agent has collected by interacting within its environment, while the second relates to the acquisition and representation of a suitable behavior policy. Combining both connections, we develop a state-action value function approximation mechanism that relies on case-based, approximate transition graphs and forms the basis on which the agent improves its behavior. We evaluate our approach empirically in the context of dynamic control tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D., Salzberg, S.: Learning to Catch: Applying Nearest Neighbor Algorithms to Dynamic Control Tasks. In: Cheeseman, P., Oldford, R. (eds.) Selecting Models from Data: Artificial Intelligence and Statistics IV (1994)

    Google Scholar 

  2. Atkeson, C., Moore, A., Schaal, S.: Locally Weighted Learning for Control. Artificial Intelligence Review 11(1-5), 75–113 (1997)

    Article  Google Scholar 

  3. Barto, A., Sutton, R., Anderson, C.: Neuronlike Adaptive Elements that Can Solve Difficult Learning Control Problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC 13(5), 835–846 (1983)

    Google Scholar 

  4. Carbonell, J.: Learning by Analogy: Formulating and Generalizing Plans from Past Experience. In: Michalski, R., Carbonell, J., Mitchell, T. (eds.) Machine Learning: An Artificial Intelligence Approach (1983)

    Google Scholar 

  5. Ernst, D., Geurts, P., Wehenkel, L.: Tree-Based Batch Mode Reinforcement Learning. Journal of Machine Learning Research (2005)

    Google Scholar 

  6. Gabel, T., Riedmiller, M.: CBR for State Value Function Approximation in Reinforcement Learning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 206–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gordon, G.: Stable Function Approximation in Dynamic Programming. In: ICML, pp. 261–268. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  8. Neuroinformatics Group. Reinforcement Learning Benchmarking Site (2007), www.ni.uos.de/index.php?id=930

  9. Macedo, L., Cardoso, A.: Using CBR in the Exploration of Unknown Environments with an Autonomous Agent. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 272–286. Springer, Heidelberg (2004)

    Google Scholar 

  10. Peng, J.: Efficient Memory-Based Dynamic Programming. In: Proceedings of the Twelfth International Conference on Machine Learning (ICML 1995), Tahoe City, USA, pp. 438–446. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  11. Powell, J., Hauff, B., Hastings, J.: Evaluating the Effectiveness of Exploration and Accumulated Experience in Automatic Case Elicitation. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 397–407. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-Interscience, USA (2005)

    Google Scholar 

  13. Riedmiller, M.: Neural Fitted Q Iteration – First Experiences with a Data Efficient Neural Reinforcement Learning Method. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Santamaria, J., Sutton, R., Ram, A.: Experiments with Reinforcement Learning in Problems with Continuous State and Action Spaces. Adaptive Behavior 6(2), 163–217 (1998)

    Article  Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning. An Introduction. MIT Press/A Bradford Book, Cambridge, USA (1998)

    Google Scholar 

  16. Watkins, C., Dayan, P.: Q-Learning. Machine Learning 8 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rosina O. Weber Michael M. Richter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabel, T., Riedmiller, M. (2007). An Analysis of Case-Based Value Function Approximation by Approximating State Transition Graphs. In: Weber, R.O., Richter, M.M. (eds) Case-Based Reasoning Research and Development. ICCBR 2007. Lecture Notes in Computer Science(), vol 4626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74141-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74141-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74138-1

  • Online ISBN: 978-3-540-74141-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics