Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

Abstract

The philosophy behind the original PSO is to learn from individual’s own experience and best individual experience in the whole swarm. Estimation of distribution algorithms sample new solutions from a probability model which characterizes the distribution of promising solutions in the search space at each generation. In this paper, a novel discrete particle swarm optimization algorithm based on estimation of distribution is proposed for combinatorial optimization problems. The proposed algorithm combines the global statistical information collected from local best solution information of all particles and the global best solution information found so far in the whole swarm. To demonstrate its performance, experiments are carried out on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that the proposed algorithm has superior performance to other discrete particle swarm algorithms as well as having less parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks. NJ, Piscataway, pp. 1942–1948 (1995)

    Google Scholar 

  2. Van den Bergh, F., Engelbrecht, A.P.: Cooperative Learning in Neural Network Using Particle Swarm Optimizers. South African Computer Journal 26, 84–90 (2000)

    Google Scholar 

  3. El-Galland, A., El-Hawary, M., Sallam, A.: Swarming of Intelligent Particles for Solving the Nonlinear Constrained Optimization Problem. Engineering Intelligent Systems for Electrical Engineering and Communications 9, 155–163 (2001)

    Google Scholar 

  4. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing 1(2–3), 235–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kennedy, J., Eberhart, R.C.: A Discrete Binary Version of the Particle Swarm Algorithm. In: Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics. NJ, Piscatawary, pp. 4104–4109 (1997)

    Google Scholar 

  6. Franken, N., Engelbrecht, A.P.: Investigating Binary PSO Parameter Influence on the Knights Cover Problem. IEEE Congress on Evolutionary Computation 1, 282–289 (2005)

    Article  Google Scholar 

  7. Huang, Y.-X., Zhou, C.-G., Zou, S.-X., Wang, Y.: A Hybrid Algorithm on Class Cover Problems. Journal of Software (in Chinese) 16(4), 513–522 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Yang, S.Y., Wang, M., Jiao, L.C.: A Quantum Particle Swarm Optimization. In: Proceeding of the 2004 IEEE Congress on Evolutionary Computation, vol. 1, pp. 320–324 (2004)

    Google Scholar 

  9. Yin, P.Y.: Genetic Particle Swarm Optimization for Polygonal Approximation of Digital Curves. Pattern Recognition and Image Analysis 16(2), 223–233 (2006)

    Article  Google Scholar 

  10. Mühlenbein, H., Paaβ, G.: From Recombination of Genes to the Estimation of Distributions. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) Proceedings of the 4th Conference on Parallel Problem Solving from Nature-PPSN IV. LNCS, vol. 1411, pp. 178–187. Springer, Berlin (1996)

    Chapter  Google Scholar 

  11. Pelikan, M., Goldberg, D.E., Lobo, F.: A Survey Of Optimization by Building and Using Probabilistic Models. Computational Optimization and Applications 21(1), 5–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kern, S., Muller, S.D., Hansen, N., Buche, D., Ocenasek, J., Koumoutsakos, P.: Learning Probability Distributions in Continuous Evolutionary Algorithms-A Comparative Review. Natural Computing 3(1), 77–112 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Larrañaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. In: Genetic Algorithms and Evolutionary Computation, vol. 2, Springer, Heidelberg (2001)

    Google Scholar 

  14. Müehlenbein, H.: The Equation for Response to Selection and Its Use for Prediction. Evol. Comput. 5(3), 303–346 (1997)

    Article  Google Scholar 

  15. Baluja, S.: Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. School of Comput. Sci. Carnegie Mellon Univ. Pittsburgh, PA, Tech. Rep. CMU-CS-94-163 (1994)

    Google Scholar 

  16. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The Compact Genetic Algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)

    Article  Google Scholar 

  17. Pisinger, D.: Where Are the Hard Knapsack Problem? Computer & Operations Research 32, 271–2284 (2006)

    MathSciNet  Google Scholar 

  18. Michalewicz, Z.: Genetic Algorithm+ Data Structure=Evolution Programs, pp. 59–65. Science Press, Beijng (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J. (2007). A Novel Discrete Particle Swarm Optimization Based on Estimation of Distribution. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics