Abstract
We show that the multi-commodity max-flow/min-cut gap for series-parallel graphs can be as bad as 2. This improves the largest known gap for planar graphs from \(\frac32\) to 2. Our approach uses a technique from geometric group theory called coarse differentiation in order to lower bound the distortion for embedding a particular family of shortest-path metrics into L 1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: \({O}(\sqrt{\log n})\) approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems. In: 37th Annual ACM Symposium on Theory of Computing, ACM, New York (2005)
Andoni, A., Deza, M., Gupta, A., Indyk, P., Raskhodnikova, S.: Lower bounds for embedding of edit distance into normed spaces. In: Proceedings of the 14th annual ACM-SIAM Symposium on Discrete Algorithms, ACM Press, New York (2003)
Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the Sparsest Cut. In: 37th Annual Symposium on the Theory of Computing, pp. 553–562, Journal of the AMS ( to appear 2005)
Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and graph partitionings. In: 36th Annual Symposium on the Theory of Computing, pp. 222–231. ACM, New York, 2004 (to appear)
Aumann, Y., Rabani, Y.: An O(logk) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput (electronic) 27(1), 291–301 (1998)
Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. vol. 1(48) of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2000)
Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1-2), 46–52 (1985)
Brinkman, B., Karagiozova, A., Lee, J.R.: Vertex cuts, random walks, and dimension reduction in series-parallel graphs. STOC ( to appear)
Chakrabarti, A., Lee, J.R., Vincent, J.: Parity and contraction in planar graph embeddings (2007)
Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)
Cheeger,J., Kleiner, B.: Differentiating maps into L 1 and the geometry of BV functions. Preprint, 2006
Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding k-outerplanar graphs into \(l\sb 1\). SIAM J. Discrete Math. 20(1), 119–136 (2006)
Chlamtac, E., Makayrchev, K., Makarychev, Y.: How to play unique game using embeddings. In: 47th Annual Syposium on Foundations of Computer Science (2006)
Diestel, R.: Graph theory. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005)
Eskin, A., Fisher, D., Whyte, K.: Quasi-isometries and rigidity of solvable groups. Preprint (2006)
Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for minimum-weight vertex separators. In: 37th Annual ACM Symposium on Theory of Computing. ACM, 2005., SIAM J. Comput. New York ( to appear)
Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321(3), 479–531 (2001)
Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and \(l\sb 1\)-embeddings of graphs. Combinatorica 24(2), 233–269 (2004)
Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer, New York (2001)
Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: 42nd Annual Symposium on Foundations of Computer Science, pp. 10–33. IEEE Computer Society Press, Los Alamitos (2001)
Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis. Math. Ann. 334(4), 821–852 (2006)
Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1. In: 46th Annual Symposium on Foundations of Computer Science, pp. 53–62. IEEE Computer Society Press, Los Alamitos (2005)
Lee, J.R., Naor, A.: l p metrics on the Heisenberg group and the Goemans-Linial conjecture. In: 47th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos (2006)
Linial, N.: Finite metric-spaces—combinatorics, geometry and algorithms. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 573–586. Higher Ed. Press, Beijing (2002)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)
Matoušek, J.: Open problems on low-distortion embeddings of finite metric spaces. Online, http://kam.mff.cuni.cz/~matousek/metrop.ps
Matoušek, J.: Lectures on discrete geometry. Graduate Texts in Mathematics, vol. 212. Springer-Verlag, New York (2002)
Newman, I., Rabinovich, Y.: A lower bound on the distortion of embedding planar metrics into Euclidean space. Discrete Comput. Geom. 29(1), 77–81 (2003)
Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Combin. Theory Ser. B 31(1), 75–81 (1981)
Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math (2) 129(1), 1–60 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, J.R., Raghavendra, P. (2007). Coarse Differentiation and Multi-flows in Planar Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-74208-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74207-4
Online ISBN: 978-3-540-74208-1
eBook Packages: Computer ScienceComputer Science (R0)