Abstract
We present the fastest FPRAS for counting and randomly generating simple graphs with a given degree sequence in a certain range. For degree sequence \((d_i)_{i=1}^n\) with maximum degree \(d_{\max}=O(m^{1/4-\tau})\), our algorithm generates almost uniform random graph with that degree sequence in time O(m d max ) where is the number of edges in the graph and τ is any positive constant. The fastest known FPRAS for this problem [22] has running time of O(m 3 n 2). Our method also gives an independent proof of McKay’s estimate [33] for the number of such graphs.
Our approach is based on sequential importance sampling (SIS) technique that has been recently successful for counting graphs [15,11,10]. Unfortunately validity of the SIS method is only known through simulations and our work together with [10] are the first results that analyze the performance of this method.
Moreover, we show that for d = O(n 1/2 − τ), our algorithm can generate an asymptotically uniform d-regular graph. Our results are improving the previous bound of d = O(n 1/3 − τ) due to Kim and Vu [30] for regular graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Spencer, J.: The Probabilistic Method. Wiley, NewYork (1992)
Alderson, D., Doyle, J., Willinger, W.: Toward and Optimization-Driven Framework for Designing and Generating Realistic Internet Topologies. HotNets (2002)
Amraoui, A., Montanari, A., Urbanke, R.: How to Find Good Finite-Length Codes: From Art Towards Science (preprint, 2006), arxiv.org/pdf/cs.IT/0607064
Bassetti, F., Diaconis, P.: Examples Comparing Importance Sampling and the Metropolis Algorithm (2005)
Bayati, M., Montanari, A., Saberi, A.: (work in progress, 2007)
Bayati, M., Kim, J.H., Saberi, A.: A Sequential Algorithm for Generating Random Graphs (2007), Extended Version, available at http://arxiv.org/abs/cs/0702124
Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequence. J. Combinatorial Theory Ser.A 24(3), 296–307 (1978)
Bezáková, I., Bhatnagar, N., Vigoda, E.: Sampling Binary Contingency tables with a Greedy Start. In: SODA (2006)
Bezáková, I., Sinclair, A., S̆tefankovič, D., Vigoda, E.: Negative Examples for Sequential Importance Sampling of Binary Contingency Tables, 2006 (preprint)
Blanchet, J.: Efficient Importance Sampling for Counting, 2006 (preprint)
Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees (submitted)
Bollobás, B.: A probabilistic proof of an asymptotoic forumula for the number of labelled regular graphs. European J. Combin. 1(4), 311–316 (1980)
Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution (preprint)
Bu, T., Towsley, D.: On Distinguishing between Internet Power Law Topology Generator. In: INFOCOM (2002)
Chen, Y., Diaconis, P., Holmes, S., Liu, J.S.: Sequential Monte Carlo methods for statistical analysis of tables. Journal of the American Statistical Association 100, 109–120 (2005)
Cooper, C., Dyer, M., Greenhill, C.: Sampling regular graphs and peer-to-peer network. Combinatorics, Probability and Computing (to appear)
Chung, F., Lu, L.: Conneted components in random graphs with given expected degree sequence. Ann. Comb. 6(2), 125–145 (2002)
Diaconis, P., Gangolli, A.: Rectangular arrays with fixed margins. In: Discrete probability and algorithms (Minneapolis, MN, 1993). IMA Vol. Math. Appl., vol. 72, pp. 15–41. Springer, Heidelberg (1995)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. In: SIGCOM (1999)
Gkantsidis, C., Mihail, M., Zegura, E.: The Markov Chain Simulation Method for Generating Connected Power Law Random Graphs. Alenex (2003)
Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution, Theoret. Comput. Sci. 43, 169-188. 73, 1, 91-100 (1986)
Jerrum, M., Sinclair, A.: Approximate counting, uniform generation and rapidly mixing Markov chains. Inform. and Comput. 82(1), 93–133 (1989)
Jerrum, M., Sinclair, A.: Fast uniform generation of regular graphs. Theoret. Comput. Sci. 73(1), 91–100 (1990)
Jerrum, M., Sinclair, A., McKay, B.: When is a graphical sequence stable? In: Random graphs vol. 2 (Poznań 1989), pp. 101–115. Wiley-Intersci. Publ. Wiley, New York (1992)
Jerrum, M., Sinclair, A., Vigoda, E.: A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Non-Negative Entries. Journal of the ACM 51(4), 671–697 (2004)
Kannan, R., Tetali, P., Vempala, S.: Simple Markov chain algorithms for generating bipartite graphs and tournaments, (1992) Random Structures and Algorithms 14, 293-308 (1999)
Kim, J.H.: On Brooks’ Theorem for Sparse Graphs. Combi. Prob. & Comp. 4, 97–132 (1995)
Kim, J.H., Vu, V.H.: Concentration of multivariate polynomials and its applications. Combinatorica 20(3), 417–434 (2000)
Kim, J.H., Vu, V.H.: Generating Random Regular Graphs. In: STOC, pp. 213–222 (2003)
Kim, J.H., Vu, V.: Sandwiching random graphs. Advances in Mathematics 188, 444–469 (2004)
Knuth, D.: Mathematics and computer science: coping with finiteness. Science 194(4271), 1235–1242 (1976)
Medina, A., Matta, I., Byers, J.: On the origin of power laws in Internet topologies. ACM Computer Communication Review 30(2), 18–28 (2000)
McKay, B.: Asymptotics for symmetric 0-1 matrices with prescribed row sums. Ars Combinatorica 19A, 15–25 (1985)
McKay, B., Wormald, N.C.: Uniform generation of random regular graphs of moderate degree. J. Algorithms 11(1), 52–67 (1990b)
McKay, B., Wormald, N.C.: Asymptotic enumeration by degree sequence of graphs with degrees o(n 1/2). Combinatorica 11(4), 369–382 (1991)
Milo, R., Kashtan, N., Itzkovitz, S., Newman, M., Alon, U.: On the uniform generation of random graphs with prescribed degree sequences (2004), http://arxiv.org/PS_cache/cond-mat/pdf/0312/0312028.pdf
Milo, R., ShenOrr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)
Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 2–3, 161–179 (1995)
Sinclair, A.: Personal communication (2006)
Steger, A., Wormald, N.C.: Generating random regular graphs quickly (English Summary) Random graphs and combinatorial structures (Oberwolfach, 1997). Combin. Probab. Comput. 8(4), 377–396 (1997)
Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Network Topology Generators: Degree based vs. Structural. ACM SIGCOM (2002)
Wormald, N.C.: Models of random regular graphs. In: Surveys in combinatorics (Canterbury). London Math. Soc. Lecture Notes Ser., vol. 265, pp. 239–298. Cambridge Univ. Press, Cambridge (1999)
Vu, V.H.: Concentration of non-Lipschitz functions and applications, Probabilistic methods in combinatorial optimization. Random Structures Algorithms 20(3), 267–316 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bayati, M., Kim, J.H., Saberi, A. (2007). A Sequential Algorithm for Generating Random Graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-74208-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74207-4
Online ISBN: 978-3-540-74208-1
eBook Packages: Computer ScienceComputer Science (R0)