Skip to main content

Impossibility Results on Weakly Black-Box Hardness Amplification

  • Conference paper
Fundamentals of Computation Theory (FCT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4639))

Included in the following conference series:

Abstract

We study the task of hardness amplification which transforms a hard function into a harder one. It is known that in a high complexity class such as exponential time, one can convert worst-case hardness into average-case hardness. However, in a lower complexity class such as NP or sub-exponential time, the existence of such an amplification procedure remains unclear.

We consider a class of hardness amplifications called weakly black-box hardness amplification, in which the initial hard function is only used as a black box to construct the harder function. We show that if an amplification procedure in TIME(t) can amplify hardness beyond an O(t) factor, then it must basically embed in itself a hard function computable in TIME(t). As a result, it is impossible to have such a hardness amplification with hardness measured against TIME(t). Furthermore, we show that, for any k ∈ ℕ, if an amplification procedure in Σ k P can amplify hardness beyond a polynomial factor, then it must basically embed a hard function in Σ k P. This in turn implies the impossibility of having such hardness amplification with hardness measured against Σ k P/poly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: an isomorphism theorem and a gap theorem. Journal of Computer and System Sciences 57, 127–143 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Billingsley, P.: Probability and measure, 3rd edn. Wiley & Sons, Chichester (1995)

    MATH  Google Scholar 

  3. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3(4), 307–318 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 112–117. IEEE Computer Society Press, Los Alamitos (1982)

    Google Scholar 

  5. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP problems. In: 44th Annual Symposium on Foundations of Computer Science, Cambridge, Massachusetts, pp. 11–14 (October 2003)

    Google Scholar 

  6. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory 17(1), 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Håstad, J.: Computational limitations for small depth circuits. PhD thesis, MIT Press (1986)

    Google Scholar 

  8. Healy, A., Vadhan, S., Viola, E.: Using nondeterminism to amplify hardness. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 192–201. ACM Press, New York (2004)

    Google Scholar 

  9. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, pp. 538–545. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  10. Impagliazzo, R., Levin, L.: No better ways to generate hard NP instances than picking uniformly at random. In: Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, pp. 812–821. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  11. Impagliazzo, R., Shaltiel, R., Wigderson, A.: Extractors and pseudo-random generators with optimal seed length. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (2000)

    Google Scholar 

  12. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 220–229. ACM Press, New York (1997)

    Google Scholar 

  13. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. In: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pp. 659–667. ACM Press, New York (1999)

    Chapter  Google Scholar 

  14. Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hardness amplification. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 170–182. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  15. Lin, H., Trevisan, L., Wee, H.: On hardness amplification of one-way functions. In: Proceedings of the 2nd Theory of Cryptography Conference, pp. 34–49 (2005)

    Google Scholar 

  16. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63–70 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nisan, N., Wigderson, A.: Hardness vs Randomness. Journal of Computing System Science 49(2), 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. O’Donnell, R.: Hardness amplification within NP. In: Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 751–760. ACM Press, New York (2002)

    Google Scholar 

  19. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  20. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-random generator. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, pp. 648–657. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  22. Umans, C.: Pseudo-random generators for all hardnesses. Journal of Computer and System Sciences 67(2), 419–440 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4), 147–188 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Viola, E.: On constructing parallel pseudorandom generators from one-way Functions. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 183–197. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  25. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91. IEEE Computer Society Press, Los Alamitos (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erzsébet Csuhaj-Varjú Zoltán Ésik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, CJ., Tsai, SC., Wu, HL. (2007). Impossibility Results on Weakly Black-Box Hardness Amplification. In: Csuhaj-Varjú, E., Ésik, Z. (eds) Fundamentals of Computation Theory. FCT 2007. Lecture Notes in Computer Science, vol 4639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74240-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74240-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74239-5

  • Online ISBN: 978-3-540-74240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics