Skip to main content

A Largest Common d-Dimensional Subsequence of Two d-Dimensional Strings

  • Conference paper
Fundamentals of Computation Theory (FCT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4639))

Included in the following conference series:

  • 515 Accesses

Abstract

We introduce a definition for a largest common d -dimensional subsequence of two d -dimensional strings for d ≥ 1. Our purpose is to generalize the well-known definition of a longest common subsequence of linear strings for dimensions higher than one. We prove that computing a largest common two-dimensional subsequence of two given two-dimensional strings is NP-complete. We present an algorithm for the case of the problem when the definition is weakened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R.A.: Similarity in two dimensional strings. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 319–328. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Bunke, H., Buhler, U.: Applications of approximate string matching to 2d shape recognition. Pattern Recognition 26(12), 1797–1812 (1993)

    Article  Google Scholar 

  3. Bengroth, L., Hakkonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proc. SPIRE, pp. 39–48 (2000)

    Google Scholar 

  4. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. J. SIAM Comp. 4(4), 507–512 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Compnay, New York (1979)

    MATH  Google Scholar 

  6. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matching in bipartite graphs. J. SIAM Comp. 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Krithivasan, K., Sitalakshmi, R.: Efficient two-dimensional pattern matching in the presence of erriors. Information Sciences 43, 169–184 (1987)

    Article  Google Scholar 

  8. Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edi-distance: an implementation. In: Proc. SODA, pp. 781–790 (2001)

    Google Scholar 

  9. Navarro, G., Baeza-Yates, R.A.: Fast multi-dimensional approximate matching. In: Crochemore, M., Paterson, M.S. (eds.) Combinatorial Pattern Matching. LNCS, vol. 1645, pp. 243–257. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Wagner, R.A., Fisher, M.J.: The string-to-string correction problem. J. of ACM 21(1), 168–173 (1974)

    Article  MATH  Google Scholar 

  11. Wu, W.-Y., Wang, M.-J.: Two-dimensional object recognition through two-stage string matching. IEEE Transactions on Image Processing 8(7), 978–981 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erzsébet Csuhaj-Varjú Zoltán Ésik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arslan, A.N. (2007). A Largest Common d-Dimensional Subsequence of Two d-Dimensional Strings. In: Csuhaj-Varjú, E., Ésik, Z. (eds) Fundamentals of Computation Theory. FCT 2007. Lecture Notes in Computer Science, vol 4639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74240-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74240-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74239-5

  • Online ISBN: 978-3-540-74240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics