Abstract
A texture classification method using a binary texture metric is presented. The method consists of extracting local structures and describing their distribution by a global approach. Texture primitives are determined by a localized thresholding against the local median. The local spatial signature of the thresholded image is uniquely encoded as a scalar value, whose histogram helps characterize the overall texture. A multi resolution approach has been tried to handle variations in scale. Also, the encoding scheme facilitates a rich class of equivalent structures related by image rotation. Then, we demonstrate – using a set of classifications, that the proposed method significantly improves the capability of texture recognition and outperforms classical algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuceryan, M., Jain, A.K.: Texture analysis. Handbook of pattern recognition & computer vision, 235–276 (1993)
Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Sys. Man. Cybern 3(6), 610–621 (1973)
Davis, L.S., Clearman, M., Aggarwal, J.K.: An empirical evaluation of generalized cooccurrence matrices. IEEE Trans. on Pattern Analysis and Machine Intelligence 3(2), 214–221 (1981)
Gotlieb, C.C., Kreyszig, H.E.: Texture descriptors based on co-occurrence matrices. Comput. Vision Graph. Image Process 51(1), 70–86 (1990)
Zucker, S.W.: Toward a model of texture. Computer Graphics and Image Processing 5, 190–202 (1976)
Vilnrotter, F., Nevatia, R.: Structural texture analysis applications. In: DARPA 1982, pp. 243–252 (1982)
Voorhees, H., Poggio, T.: Detecting textons and texture boundaries in natural images. In: Proceedings of the First International Conference on Computer Vision, pp. 250–258 (1987)
Blostein, D., Ahuja, N.: Shape from texture: Integrating texture-element extraction and surface estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(12), 1233–1251 (1989)
Chellappa, R., Chatterjee, S.: Classification of textures using gaussian markov random fields. IEEE Trans. Acoustics Speech Signal Process 33, 959–963 (1985)
Comer, M., Delp, E.: Segmentation of textured images using a multiresolution gaussian autoregressive model. IEEE Transactions on Image Processing 8(3), 408–420 (1999)
Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of gratings. Journal Physiol. 197, 551–566 (1968)
Turner, M.R.: Texture discrimination by gabor functions. Biological Cybernetics 55, 71–82 (1986)
Clark, M., Bovik, A.C.: Texture segmentation using gabor modulation/demodulation. Pattern Recognition Letters 6(4), 261–267 (1987)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)
Rushing, J., Ranganath, H., Hinke, T., Graves, S.: Using association rules as texture features. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 845–858 (2001)
Hafiane, A., Zavidovique, B.: Local relational string for textures classification. In: IEEE ICIP, Atlanta, USA, IEEE Computer Society Press, Los Alamitos (2006)
Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 8, 118–125 (1986)
Smith, G., Burns, I.: Measuring texture classification algorithms. Pattern Recognition Letters 18(14), 1495–1501 (1997)
Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinene, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. 16th Intl. Conf. Pattern Recognition 2002 (2002)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hafiane, A., Seetharaman, G., Zavidovique, B. (2007). Median Binary Pattern for Textures Classification. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-74260-9_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74258-6
Online ISBN: 978-3-540-74260-9
eBook Packages: Computer ScienceComputer Science (R0)