Skip to main content

Median Binary Pattern for Textures Classification

  • Conference paper
Image Analysis and Recognition (ICIAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4633))

Included in the following conference series:

  • 2763 Accesses

Abstract

A texture classification method using a binary texture metric is presented. The method consists of extracting local structures and describing their distribution by a global approach. Texture primitives are determined by a localized thresholding against the local median. The local spatial signature of the thresholded image is uniquely encoded as a scalar value, whose histogram helps characterize the overall texture. A multi resolution approach has been tried to handle variations in scale. Also, the encoding scheme facilitates a rich class of equivalent structures related by image rotation. Then, we demonstrate – using a set of classifications, that the proposed method significantly improves the capability of texture recognition and outperforms classical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuceryan, M., Jain, A.K.: Texture analysis. Handbook of pattern recognition & computer vision, 235–276 (1993)

    Google Scholar 

  2. Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)

    Article  Google Scholar 

  3. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Sys. Man. Cybern 3(6), 610–621 (1973)

    Article  Google Scholar 

  4. Davis, L.S., Clearman, M., Aggarwal, J.K.: An empirical evaluation of generalized cooccurrence matrices. IEEE Trans. on Pattern Analysis and Machine Intelligence 3(2), 214–221 (1981)

    Google Scholar 

  5. Gotlieb, C.C., Kreyszig, H.E.: Texture descriptors based on co-occurrence matrices. Comput. Vision Graph. Image Process 51(1), 70–86 (1990)

    Article  Google Scholar 

  6. Zucker, S.W.: Toward a model of texture. Computer Graphics and Image Processing 5, 190–202 (1976)

    Article  Google Scholar 

  7. Vilnrotter, F., Nevatia, R.: Structural texture analysis applications. In: DARPA 1982, pp. 243–252 (1982)

    Google Scholar 

  8. Voorhees, H., Poggio, T.: Detecting textons and texture boundaries in natural images. In: Proceedings of the First International Conference on Computer Vision, pp. 250–258 (1987)

    Google Scholar 

  9. Blostein, D., Ahuja, N.: Shape from texture: Integrating texture-element extraction and surface estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(12), 1233–1251 (1989)

    Article  Google Scholar 

  10. Chellappa, R., Chatterjee, S.: Classification of textures using gaussian markov random fields. IEEE Trans. Acoustics Speech Signal Process 33, 959–963 (1985)

    Article  MathSciNet  Google Scholar 

  11. Comer, M., Delp, E.: Segmentation of textured images using a multiresolution gaussian autoregressive model. IEEE Transactions on Image Processing 8(3), 408–420 (1999)

    Article  Google Scholar 

  12. Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of gratings. Journal Physiol. 197, 551–566 (1968)

    Google Scholar 

  13. Turner, M.R.: Texture discrimination by gabor functions. Biological Cybernetics 55, 71–82 (1986)

    Google Scholar 

  14. Clark, M., Bovik, A.C.: Texture segmentation using gabor modulation/demodulation. Pattern Recognition Letters 6(4), 261–267 (1987)

    Article  Google Scholar 

  15. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  16. Rushing, J., Ranganath, H., Hinke, T., Graves, S.: Using association rules as texture features. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 845–858 (2001)

    Article  Google Scholar 

  17. Hafiane, A., Zavidovique, B.: Local relational string for textures classification. In: IEEE ICIP, Atlanta, USA, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  18. Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 8, 118–125 (1986)

    Article  Google Scholar 

  19. Smith, G., Burns, I.: Measuring texture classification algorithms. Pattern Recognition Letters 18(14), 1495–1501 (1997)

    Article  MATH  Google Scholar 

  20. Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinene, S.: Outex - a new framework for empirical evaluation of texture analysis algorithms. In: Proc. 16th Intl. Conf. Pattern Recognition 2002 (2002)

    Google Scholar 

  21. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Kamel Aurélio Campilho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hafiane, A., Seetharaman, G., Zavidovique, B. (2007). Median Binary Pattern for Textures Classification. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74260-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74258-6

  • Online ISBN: 978-3-540-74260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics