Abstract
We present a theoretical analysis of schema-based design (SBD), a methodology for designing autonomous agent architectures. We also provide an overview of the AKIRA Schema Language (AKSL), which permits to design schema-based architectures for anticipatory behavior experiments and simulations. Several simulations using AKSL are reviewed, highlighting the relations between pragmatic and epistemic aspects of behavior. Anticipation is crucial in realizing several functionalities with AKSL, such as selecting actions, orienting attention, categorizing and grounding declarative knowledge.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
akira,(2003), http://www.akira-project.org/
Arbib, M.: Levels of modelling of mechanisms of visually guided behavior. Behavioral and Brain Science 10, 407–465 (1987)
Arbib, M.: Schema theory. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelligence, 2nd edn. vol. 2, pp. 1427–1443. Wiley, Chichester, UK (1992)
Arbib, M.A.: The metaphorical brain 2: Neural networks and beyond. Wiley, New York (1989)
Arkin, R., Ali, K., Weitzenfeld, A., Cervantes-Prez, F.: Behavioral models of the praying mantis as a basis for robotic behavior. Robotics and Autonomous Systems 32(1), 39–60 (2000)
Arkin, R.C.: Behavior-Based Robotics. The MIT Press, Cambridge (1998)
Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–600 (1999)
Bartlett, F.C.: Remembering. Cambridge University Press, Cambridge (1932)
Bates, E.: The Emergence of Symbols. Academic Press, London (1979)
Beer, R.D.: Intelligence as Adaptive Behavior: An Eperiment in Computational Neuroethology. Academic Press, San Diego (1990)
Bickhard, M.H.: Levels of representationality. Journal of Experimental and Theoretical Artificial Intelligence 10(2), 179–215 (1998)
Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(47), 139–159 (1991)
Butz, M.V.: Anticipatory learning classifier systems. Kluwer Academic Publishers, Boston, MA (2002)
Crabbe, F.L.: Optimal and non-optimal compromise strategies in action selection. In: Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior (2004)
Damasio, A.R.: Descartes’ Error: Emotion, Reason and the Human Brain. Grosset/Putnam, New York, 1994. trad. it. di Cartesio, L., Adelphi, Milano (1999)
Davidsson, P.: A framework for preventive state anticipation. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 151–166. Springer, Heidelberg (2003)
Demiris, Y.: Prediction of intent in robotics and multi-agent systems. to appear in Cognitive Processing (2007)
Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal 54, 361–369 (2005)
Desmurget, M., Grafton, S.: Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000)
Doya, K.: Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol 10(6), 732–739 (December 2000)
Drescher, G.L.: Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT Press, Cambridge, MA (1991)
Fleischer, J.G.: Neural correlates of anticipation in cerebellum, basal ganglia, and hippocampus. In: Butz, M.V., et al. (eds.) ABiALS 2006, LNAI, vol. 4520, pp. 128–152 (2007)
Frith, C.D., Blakemore, S.J., Wolpert, D.M.: Abnormalities in the awareness and control of action. PhilosTrans R Soc Lond B Biol Sci 355(1404), 1771–1788 (2000)
Gallese, V., Metzinger, T.: Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology 13(3), 365–388 (2003)
Gross, H.-M., Volker, S., Torsten, S.: A neural architecture for sensorimotor anticipation. Neural Networks 12, 1101–1129 (1999)
Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behav. Brain Sci. 27(3), 377–396 (2004)
Haruno, M., Wolpert, D., Kawato, M.: Hierarchical mosaic for movement generation. In: Ono, T., Matsumoto, G., Llinas, R., Berthoz, A., Norgren, H., Tamura, R. (eds.) Excepta Medica International Congress Series, Elsevier Science, Amsterdam (2003)
Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6, 242–247 (2002)
Hoffmann, H.: Perception through visuomotor anticipation in a mobile robot. Neural Networks 20, 22–33 (2007)
Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gerard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems: Foundations, Theories, and Systems, pp. 44–65. Springer-Verlag, Berlin Heidelberg (2003)
Holland, J., Holyoak, K., Nisbett, R., Thagard, P.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge, Massachussets (1986)
ikaros (2002), http://www.lucs.lu.se/IKAROS
irrlicht (2003), http://irrlicht.sourceforge.net/
James, W.: The Principles of Psychology. Dover Publications, New York (1890)
Johansson, B., Balkenius, C.: An experimental study of anticipation in robot navigation. In: Butz, M.V., et al. (eds.) ABiALS 2006, LNAI, vol. 4520, pp. 128–152 (2007)
Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (1960)
Lyons, D.M., Arbib, M.A.: A formal model of computation for sensory-based robotics. IEEE Journal of Robotics and Automation 5(3), 280–293 (1989)
Maes, P.: Situated agents can have goals. In: Maes, P. (ed.) Designing Autonomous Agents, pp. 49–70. MIT Press, Cambridge (1990)
Mccauley, L.: Neural schemas: A mechanism for autonomous action selection and dynamic motivation. In: the 3rd WSES Neural Networks and Applications Conference (2002)
Miall, R.C., Wolpert, D.M.: Forward models for physiological motor control. Neural Networks 9(8), 1265–1279 (1996)
Middleton, F.A., Strick, P.L.: Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42(2), 183–200 (2000)
Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior. Holt, Rinehart and Winston, New York (1960)
Minsky, M.: The Society of Mind. Simon & Schuster (1988)
Neisser, U.: Cognition and reality. Freeman, San Francisco, CA (1976)
Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood Cliffs, NJ (1972)
Norman, D.A., Shallice, T.: Attention to action: Willed and automatic control of behaviour. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness and Self-Regulation: Advances in Research and Theory, Plenum Press, New York (1986)
Pezzulo, G., Calvi, G.: A schema based model of the praying mantis. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J., Marocco, D., Miglino, O., Meyer, J.-A., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 211–223. Springer Verlag, Heidelberg (2006)
Pezzulo, G., Calvi, G.: Toward a perceptual symbol system. In: Proceedings of the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Science Studies 118 (2006)
Pezzulo, G., Calvi, G.: Designing modular architectures in the framework akira. To appear in Multiagent and Grid Systems 3(1) (2007)
Pezzulo, G., Calvi, G., Castelfranchi, C.: Dipra: Distributed practical reasoning architecture. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, pp. 1458–1464 (2007)
Pezzulo, G., Calvi, G., Ognibene, D., Lalia, D.: Fuzzy-based schema mechanisms in akira. In: CIMCA 2005. Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Washington, DC, USA, vol. 2, pp. 146–152. IEEE Computer Society, Los Alamitos (2005)
Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cognitive Processing (to appear, 2007)
Piaget, J.: The Construction of Reality in the Child. Ballentine (1954)
Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci 2(1), 79–87 (January 1999)
Roy, D.: Semiotic schemas: a framework for grounding language in action and perception. Artificial Intelligence 167(1-2), 170–205 (2005)
Saffiotti, A.: Handling uncertainty in control of autonomous robots. In: Artificial Intelligence Today, pp. 381–407 (1999)
Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures. L. Erlbaum, Hillsdale (1977)
Schultz, W.: Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80, 1–27 (1998)
Selfridge, O.: The Mechanisation of Thought Processes, chapter Pandemonium: A paradigm for learning, vol 10, pp. 511–529. National Physical Laboratory Symposia. Her Majesty’s Stationary Office, London (1959)
Shapiro, D., Schmidt, R.: The schema theory: Recent evidence & developmental implications. In: Clark, J.K.J. (ed.) The development of movement control and co-ordination, Wiley, New York (1982)
Smith, O.J.M.: A controller to overcome dead time. ISA Journal 6(2), 28–33 (1959)
Tani, J.: Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Netw. 16(1), 11–23 (January 2003)
Tani, J., Ito, M., Sugita, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using rnnpb. Neural Netw. 17(8-9), 1273–1289 (2004)
Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Netw. 12(7-8), 1131–1141 (October 1999)
Weitzenfeld, A., Peguero, O., Gutiérrez, S.: NSL/ASL: Distributed simulation of modular neural networks. In: MICAI, pp. 326–337 (2000)
Wolpert, D.M., Gharamani, Z., Jordan, M.: An internal model for sensorimotor integration. Science 269, 1179–1182 (1995)
Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)
Ziemke, T., Jirenhed, D.-A., Hesslow, G.: Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pezzulo, G., Calvi, G. (2007). Schema-Based Design and the AKIRA Schema Language: An Overview. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2006. Lecture Notes in Computer Science(), vol 4520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74262-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-74262-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74261-6
Online ISBN: 978-3-540-74262-3
eBook Packages: Computer ScienceComputer Science (R0)