Skip to main content

n-Grams of Action Primitives for Recognizing Human Behavior

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

  • 1945 Accesses

Abstract

This paper presents a novel approach for behavior recognition from video data. A biologically inspired action representation is derived by applying a clustering algorithm to sequences of motion images. To obey the temporal context, we express behaviors as sequences of n-grams of basic actions. Novel video sequences are classified by comparing histograms of action n-grams to stored histograms of known behaviors. Experimental validation shows a high accuracy in behavior recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ghahramani, Z.: Building blocks of movement. Nature 407, 682–683 (2000)

    Article  Google Scholar 

  2. Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)

    Article  Google Scholar 

  3. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R.: Perspectives and problems in motor learning. TRENDS in Cognitive Sciences 5(11), 487–494 (2001)

    Article  Google Scholar 

  4. Fod, A., Matarić, M., Jenkins, O.: Automated Derivation of Primitives for Movement Classification. Autonomous Robots 12(1), 39–54 (2002)

    Article  MATH  Google Scholar 

  5. Thoroughman, K., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000)

    Article  Google Scholar 

  6. Thurau, C., Bauckhage, C., Sagerer, G.: Synthesizing Movements for Computer Game Characters. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, pp. 179–186. Springer, Heidelberg (2004)

    Google Scholar 

  7. Moeslund, T., Reng, L., Granum, E.: Finding Motion Primitives in Human Body Gestures. In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 133–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Moeslund, T., Fihl, P., Holte, M.: Action Recognition using Motion Primitives. In: The 15th Danish conference on pattern recognition and image analysis (2006)

    Google Scholar 

  9. Ogale, A.S., Karapurkar, A., Aloimonos, Y.: View-invariant modeling and recognition of human actions using grammars. In: ICCV Workshop on Dynamical Vision (2005)

    Google Scholar 

  10. Guerra-Filho, G., Aloimonos, Y.: A Sensory-Motor Language for Human Activity Understanding. In: HUMANOIDS 2006. 6th IEEE-RAS International Conference on Humanoid Robots, pp. 69–75. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  11. Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G.: Detection and Explanation of Anomalous Activities: Representing Activities as Bags of Event n-Grams. In: CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, IEEE, NJ, New York (2005)

    Google Scholar 

  12. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Behavior classification by eigendecomposition of periodic motions. Pattern Recognition 38, 1033–1043 (2005)

    Article  Google Scholar 

  13. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. In: Tenth IEEE International Conference on Computer Vision, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  14. Ward, J.H.J.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Article  Google Scholar 

  15. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  16. Rieck, K., Laskov, P., Sonnenburg, S.: Computation of Similarity Measures for Sequential Data using Generalized Suffix Trees. In: Advances in Neural Information Processing Systems, vol. 19 (2007)

    Google Scholar 

  17. Thurau, C., Hettenhausen, T., Bauckhage, C.: Classification of Team Behaviors in Sports Video Games. In: Proc. Int. Conf. on Pattern Recognition, pp. 1188–1191. IEEE, Los Alamitos (2006)

    Google Scholar 

  18. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thurau, C., Hlaváč, V. (2007). n-Grams of Action Primitives for Recognizing Human Behavior. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics