Skip to main content

Texture Defect Detection

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

This paper presents a fast multispectral texture defect detection method based on the underlying three-dimensional spatial probabilistic image model. The model first adaptively learns its parameters on the flawless texture part and subsequently checks for texture defects using the recursive prediction analysis. We provide colour textile defect detection results that indicate the advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework for contextual interaction in classification. In: ICCV 2003, Nice, France, pp. 1150–1157 (2003)

    Google Scholar 

  2. Sobral, J.L.: Optimised filters for texture defect detection. In: International Conference on Image Processing, vol. III, 565–568 ( 2005)

    Google Scholar 

  3. Fujiwara, H., Zhang, Z., Toda, H., Kawabata, H.: Textile surface inspection by using translation invariant wavelet transform. In: IEEE Int. Symp. on Computational Intelligence in Robotics and Automation, vol. 3, pp. 1427–1432. IEEE, NJ, New York (2003)

    Google Scholar 

  4. Chetverikov, D.: Detecting defects in texture. In: International Conference on Pattern Recognition, pp. 61–63 (1988)

    Google Scholar 

  5. Meylani, R., Ertuzun, A., Ercil, A.: A comparative study on the adaptive lattice filter structures in the context of texture defect detection. In: ICECS 1996, vol. II, pp. 976–979 (1996)

    Google Scholar 

  6. Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)

    Google Scholar 

  7. Kittler, J.V., Marik, R., Mirmehdi, M., Petrou, M., Song, J.: Detection of defects in colour texture surfaces. In: IAPR Workshop on Machine Vision Applications, pp. 558–567 (1994)

    Google Scholar 

  8. Mirmehdi, M., Marik, R., Petrou, M., Kittler, J.V.: Iterative morphology for fault detection in stochastic textures. Electronics Letters 32, 443–444 (1996)

    Article  Google Scholar 

  9. Mitra, P., Murthy, C., Pal, S.: Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 301–312 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haindl, M., Grim, J., Mikeš, S. (2007). Texture Defect Detection. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_122

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_122

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics