Abstract
This paper presents a fast multispectral texture defect detection method based on the underlying three-dimensional spatial probabilistic image model. The model first adaptively learns its parameters on the flawless texture part and subsequently checks for texture defects using the recursive prediction analysis. We provide colour textile defect detection results that indicate the advantages of the proposed method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework for contextual interaction in classification. In: ICCV 2003, Nice, France, pp. 1150–1157 (2003)
Sobral, J.L.: Optimised filters for texture defect detection. In: International Conference on Image Processing, vol. III, 565–568 ( 2005)
Fujiwara, H., Zhang, Z., Toda, H., Kawabata, H.: Textile surface inspection by using translation invariant wavelet transform. In: IEEE Int. Symp. on Computational Intelligence in Robotics and Automation, vol. 3, pp. 1427–1432. IEEE, NJ, New York (2003)
Chetverikov, D.: Detecting defects in texture. In: International Conference on Pattern Recognition, pp. 61–63 (1988)
Meylani, R., Ertuzun, A., Ercil, A.: A comparative study on the adaptive lattice filter structures in the context of texture defect detection. In: ICECS 1996, vol. II, pp. 976–979 (1996)
Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing Co., Singapore (1992)
Kittler, J.V., Marik, R., Mirmehdi, M., Petrou, M., Song, J.: Detection of defects in colour texture surfaces. In: IAPR Workshop on Machine Vision Applications, pp. 558–567 (1994)
Mirmehdi, M., Marik, R., Petrou, M., Kittler, J.V.: Iterative morphology for fault detection in stochastic textures. Electronics Letters 32, 443–444 (1996)
Mitra, P., Murthy, C., Pal, S.: Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 301–312 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haindl, M., Grim, J., Mikeš, S. (2007). Texture Defect Detection. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_122
Download citation
DOI: https://doi.org/10.1007/978-3-540-74272-2_122
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74271-5
Online ISBN: 978-3-540-74272-2
eBook Packages: Computer ScienceComputer Science (R0)