Abstract
We present a fully automatic real-time algorithm for robust and accurate left ventricular segmentation in three-dimensional (3D) cardiac ultrasound. Segmentation is performed in a sequential state estimation fashion using an extended Kalman filter to recursively predict and update the parameters of a 3D Active Shape Model (ASM) in real-time. The ASM was trained by tracing the left ventricle in 31 patients, and provided a compact and physiological realistic shape space. The feasibility of the proposed algorithm was evaluated in 21 patients, and compared to manually verified segmentations from a custom-made semi-automatic segmentation algorithm. Successful segmentation was achieved in all cases. The limits of agreement (mean±1.96SD) for the point-to-surface distance were 2.2±1.1mm. For volumes, the correlation coefficient was 0.95 and the limits of agreement were 3.4±20 ml. Real-time segmentation of 25 frames per second was achieved with a CPU load of 22%.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jacobs, L.D., Salgo, I.S., Goonewardena, S., Weinert, L., Coon, P., Bardo, D., Gerard, O., Allain, P., Zamorano, J.L., de Isla, L.P., Mor-Avi, V., Lang, R.M.: Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. European Heart Journal 27, 460–468 (2006)
Sugeng, L., Mor-Avi, V., Weinert, L., Niel, J., Ebner, C., Steringer-Mascherbauer, R., Schmidt, F., Galuschky, C., Schummers, G., Lang, R.M., Nesser, H.J.: Quantitative assessment of left ventricular size and function. Side-by-side comparison of real-time three-dimensional echocardiography and computed tomography width magnetic resonance reference. Circulation 114, 654–661 (2006)
Blake, A., Curwen, R., Zisserman, A.: A framework for spatiotemporal control in the tracking of visual contours. International Journal of Computer Vision 11(2), 127–145 (1993)
Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1998)
Jacob, G., Noble, J.A., Kelion, A.D., Banning, A.P.: Quantitative regional analysis of myocardial wall motion. Ultrasound in Medicine & Biology 27(6), 773–784 (2001)
Jacob, G., Noble, J.A., Mulet-Parada, M., Blake, A.: Evaluating a robust contour tracker on echocardiographic sequences. Medical Image Analysis 3(1), 63–75 (1999)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - Their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
van Assen, H.C., Danilouchkine, M.G., Behloul, F., Lamb, H.J., van der Geest, R., Reiber, J.H.C., Lelieveldt, B.P.F.: Cardiac LV segmentation using a 3D active shape model driven by fuzzy inference. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 533–540. Springer, Heidelberg (2003)
Orderud, F.: A framework for real-time left ventricular tracking in 3D+T echocardiography, using nonlinear deformable contours and kalman filter based tracking. In: Computers in Cardiology (2006)
Orderud, F., Hansegård, J., Rabben, S.I.: Real-time tracking of the left ventricle in 3D echocardiography using a state estimation approach: Medical Image Computing and Computer-Assisted Intervention - MICCAI (submitted, 2007)
Comaniciu, D., Zhou, X.S., Krishnan, S.: Robust real-time myocardial border tracking for echocardiography: An information fusion approach. IEEE Transactions on Medical Imaging 23(7), 849–860 (2004)
Rabben, S.I., Torp, A.H., Støylen, A., Slørdahl, S., Bjørnstad, K., Haugen, B.O., Angelsen, B.: Semiautomatic contour detection in ultrasound M-mode images. Ultrasound in Med. & Biol. 26(2), 287–296 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hansegård, J., Orderud, F., Rabben, S.I. (2007). Real-Time Active Shape Models for Segmentation of 3D Cardiac Ultrasound. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-74272-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74271-5
Online ISBN: 978-3-540-74272-2
eBook Packages: Computer ScienceComputer Science (R0)