Skip to main content

Real-Time Elimination of Brightness in Color Images by MS Diagram and Mathematical Morphology

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

  • 1901 Accesses

Abstract

This paper proposes a real-time method for the detection and elimination of brightness in color images. We use a 2D-histogram that allows us to relate the signals of luminance and saturation of a color image and to identify the specularities in a given area of the histogram. This is known as the MS diagram and it is constructed from a polar color model. We use a new connected vectorial filter based on color morphology to eliminate the brightness. This filter operates only in the bright zones previously detected, reducing the high cost of processing of connected filtersand avoiding over-simplification, in single-processing and multiprocessing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Laplante, P.: Real-time systems design and analysis: an engineer’s handbook, 3rd edn. Wiley-IEEE Press, New York (2003)

    Google Scholar 

  2. Shafer, S.A.: Using color to separate reflection components. Color Research Appl. 10, 210–218 (1985)

    Article  Google Scholar 

  3. Bajcsy, R., Lee, S., Leonardis, A.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. International Journal on Computer Vision 17, 241–271 (1996)

    Article  Google Scholar 

  4. Klinker, G., Shafer, S.A., Kanade, T.: Image segmentation and reflection analysis through color. In: Proc. SPIE. vol. 937, pp. 229–244 (1988)

    Google Scholar 

  5. Palus, H.: Representations of colour images in different colour spaces. In: Sangwine, S., Horne, R. (eds.) The Colour Image Processing Handbook, pp. 67–75 (1998)

    Google Scholar 

  6. Wyszecki, G., Stiles, W.S.: Color Science, Concepts and Methods, Quantitative Data and Formulas, 2nd edn. John Wiley, New York, NY (1982)

    Google Scholar 

  7. Plataniotis, K., Venetsanopoulus, A.: Color Image Processing and Applications. Springer, Berlin (2000)

    Google Scholar 

  8. Levkowitz, H., Herman, G.: GHLS, a generalized lightness, hue and saturation color model. Graphical Models and Image Processing 44(4), 271–285 (1993)

    Article  Google Scholar 

  9. Serra, J.: Espaces couleur et traitement d’images. Tech. Report N-34/02/MM. Centre de Morphologie Mathématique, École des Mines de Paris (2002)

    Google Scholar 

  10. Serra, J.: Image analysis and Mathematical Morphology. vol. I, and Image Analysis and Mathematical Morphology (1982) vol. II: Theorical Advances, Academic Press, London (1988)

    Google Scholar 

  11. Hanbury, A., Serra, J.: Morphological operators on the unit circle. IEEE Transactions on Image Processing 10(1.12), 1842–1850 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Comer, M., Delp, E.: Morphological Operations for Colour Image Processing. Journal of Electronic Imaging 8, 279–289 (1999)

    Article  Google Scholar 

  13. Angulo, J.: Morpholohie mathématique et indexation d’images couleur. Application à la microscopie en biomedicine. PhD Thesis. École des Mines de Paris (2003)

    Google Scholar 

  14. Vicent, L.: Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algoritms. IEEE Transactions on Image Processing 2, 176–201 (1993)

    Article  Google Scholar 

  15. Crespo, J., Serra, J., Schafer, R.: Theoretical aspects of morphological filters by reconstruction. Signal Processing 47, 201–225 (1995)

    Article  Google Scholar 

  16. Ortiz, F., Torres, F., De Juan, E., Cuenca, N.: Colour mathematical morphology for neural image analysis. Journal of Real Time Imaging 8(1.6), 455–465 (2002)

    Article  MATH  Google Scholar 

  17. Torres, F., Angulo, J., Ortiz, F.: Automatic detection of specular reflectance in colour images using the MS diagram. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 132–139. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortiz, F. (2007). Real-Time Elimination of Brightness in Color Images by MS Diagram and Mathematical Morphology. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics