Skip to main content

Fractal Active Shape Models

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

  • 1466 Accesses

Abstract

Active Shape Models often require a considerable number of training samples and landmark points on each sample, in order to be efficient in practice. We introduce the Fractal Active Shape Models, an extension of Active Shape Models using fractal interpolation, in order to surmount these limitations. They require a considerably smaller number of landmark points to be determined and a smaller number of variables for describing a shape, especially for irregular ones. Moreover, they are shown to be efficient when few training samples are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models - Their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  2. Duta, N., Sonka, M.: Segmentation and interpretation of MR brain images: An improved Active Shape Model. IEEE Transactions On Medical Imaging 17, 1049–1062 (1998)

    Article  Google Scholar 

  3. Paragios, N., Jolly, M.P., Taron, M., Ramaraj, R.: Active Shape Models and segmentation of the left ventricle in echocardiography. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 131–142. Springer, Heidelberg (2005)

    Google Scholar 

  4. Smyth, P.P., Taylor, C.J., Adams, J.E.: Automatic measurement of vertebral shape using Active Shape Models. Image and Vision Computing 15, 575–581 (1997)

    Article  Google Scholar 

  5. Davatzikos, C., Tao, X., Shen, D.: Hierarchical Active Shape Models, using the wavelet transform. IEEE Transactions On Medical Imaging 22, 414–423 (2003)

    Article  Google Scholar 

  6. van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A.: Active Shape Model segmentation with optimal features. IEEE Transactions On Medical Imaging 21, 924–933 (2002)

    Article  Google Scholar 

  7. Twining, C., Taylor, C.J.: Kernel principal component analysis and the construction of non-linear active Shape Models. In: Proceedings of the British Machine Vision Conference, pp. 23–32 (2001)

    Google Scholar 

  8. Barnsley, M.F.: Fractals everywhere, 2nd edn. Academic Press Professional, San Diego (1993)

    MATH  Google Scholar 

  9. Manousopoulos, P., Drakopoulos, V., Theoharis, T.: Curve fitting by fractal interpolation. Transactions on Computational Science (to appear)

    Google Scholar 

  10. Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences. IEEE Trans. Signal Processing 40, 1724–1734 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manousopoulos, P., Drakopoulos, V., Theoharis, T. (2007). Fractal Active Shape Models. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics