Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2))

Included in the following conference series:

  • 1354 Accesses

Abstract

Multiwavelet analysis has been a powerful tool in image processing. But the theory is seldom applied to denoise cellular images of common phytoplankton. This paper proposes a new method which uses multiwavelets combining soft thresholding to meet this kind of applications. Three types of mutiwavelets thresholding are considered: scalar, decor and vector. Results of numerical experiments show that this method particularly using Chui-Lian orthonormal multiwavelet has better effectiveness than other methods referred in this paper for removing Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strela, V., Walden, A.: Signal and Image Denoising Via Wavelet Thresholding: Orthogonal and Biorthogonal, Scalar and Multiple Wavelet Transforms. Imperial College Statistics Section, Technical Report TR-98-01 (1998)

    Google Scholar 

  2. Goodman, T.N.T., Lee, S.L., Tang, W.S.: Wavelet in Wandering Subspaces. Trans Amer Math Soc. 338, 639–654 (1993)

    Article  MATH  Google Scholar 

  3. Chui, C.K., Lian, J.: A Study of Orthonormal Muti-Wavelets. Appl. Numer. Math. 20, 273–298 (1996)

    Article  MATH  Google Scholar 

  4. Montefusco, L.B, Pap, S.: A Parameter Selection Method for Wavelet Shrinkage Denoising BIT Numerical Nathematics. Bit Numerical Mathematics 43, 611–626 (2003)

    Article  MATH  Google Scholar 

  5. Shen, L., Tan, H.H., Tham, J.Y.: Symmetric-Antisymmetric Orthonormal Multiwavelets and Related Scalar Wavelets. IEEE Trans. Sign. Proc. 8, 258–279 (2000)

    MATH  Google Scholar 

  6. Donoho, D.L., Johnstone, I.: Adapting to Unknown Smoothness Via Wavelet Shrinkage. J Amer. Statist. Assoc. 90, 1200–1224 (1994)

    Article  Google Scholar 

  7. Donoho, D., Johnstone, I.: Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  Google Scholar 

  8. Downie, T.R., Silverman, B.W.: The Discrete Multiple Wavelet Transform and Thresholding Methods. IEEE Trans Signal Processing 46, 2558–2561 (1998)

    Article  Google Scholar 

  9. Downie, T.R.: Wavelet Metholds in Statistics. PhD thesis, University of Bristol (1997)

    Google Scholar 

  10. Silvia, B., Serena, P.: Matrix thresholding for Multiwavelet Image Denoising. Numerical Algorithms 33, 41–51 (2003)

    Article  MATH  Google Scholar 

  11. Strela, V., Walden, A.T.: Orthogonal and Biorthogonal Multiwavelets for Signal Denoising and Image Compression. Proc SPIE 3391, 96–107 (1998)

    Article  Google Scholar 

  12. Donovan, G., Geronimo, J.S., Hardin, D.P, Massopust, P.R.: Construction of Orthogonal Wavelets Using Fractal Interpolation Functions. SIAM J Math Anal. 27, 1158–1192 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ji, G., Wang, N., Wang, Y., Xu, L. (2007). Multiwavelet Denoising for Common Phytoplankton Cellular Images. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74282-1_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74282-1_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74281-4

  • Online ISBN: 978-3-540-74282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics