Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2))

Included in the following conference series:

Abstract

Machine learning approaches were employed for malignant breast tumour diagnosis and evaluation of the prognostic risk of recrudescence and metastasis by using age and ten cellular attributes of Fine Needle Aspirate of Breast (FNAB) and gene microarrays data of the breast cancer patient respectively. Feature ranking method was introduced to explore the salient elements for cancer identification and simultaneous improve the classification accuracy. In this paper, Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) and Probabilistic Neural Network (PNN) combined with Signal-to-Noise Ratio (SNR) for feature ranking and filtering were applied to distinguish between the benign and malignant tumours of breast and evaluate the prognostic risk of recrudescence and metastasis. The results reveal that feature ranking method SNR can effectively pick out the informative and important features, which had significance for clinical assistant diagnosis and is useful for improving the performance of evaluation. The best overall accuracy for breast cancer diagnosis and evaluating the prognostic risk of recrudescence and metastasis achieved 96.24% and 88.81% respectively, by using SVM-Sigmoid and SVM-RBF combined with SNR under 5-fold cross validation. This study suggests that SVM may be further developed to be a practical methodology for clinical assistant differentiating between benign and malignant tumours and possible to help the inexperienced physicians avoid misdiagnosis. It also has benefit to the cured patients who are predicted as recrudescence and metastasis pay more attention to their diseases, and then reduce the mortality rate of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Parkin, D.M.: Epidemiology of Cancer: Global Patterns and Trends. Toxicology Letters 102-103, 227–234 (1998)

    Article  Google Scholar 

  2. Butler, S.M., Webb, G.I., Lewis, R.A.: A Case Study in Feature Invention for Breast Cancer Diagnosis Using X-Ray Scatter Images. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 677–685. Springer, Heidelberg (2003)

    Google Scholar 

  3. Palmer, G.M., Zhu, C.F., Breslin, T.M., Xu, F.S., Gilchrist, K.W., Ramanujam, N.: Comparison of Multiexcitation Fluorescence and Diffuse Reflectance Spectroscopy for the Diagnosis of Breast Cancer (March 2003). IEEE Transactions on Biomedical Engineering 50, 1233–1242 (2003)

    Article  Google Scholar 

  4. Song, J.H., Venkatesh, S.S., Conant, E.A., Arger, P.H., Sehgal, C.M.: Comparative Analysis of Logistic Regression and Artificial Neural Network for Computer-aided Diagnosis of Breast Masses. Academic Radiology 12, 487–495 (2005)

    Article  Google Scholar 

  5. Cosar, Z.S., Cetin, M., Tepe, T.K., Cetin, R., Zarali, A.C.: Concordance of Mammographic Classifications of Microcalcifications in Breast Cancer Diagnosis - Utility of the Breast Imaging Reporting and Data System (fourth edition). Clinical Imaging 29, 389–395 (2005)

    Article  Google Scholar 

  6. Li, J.N., Zhang, Z., Rosenzweig, J., Wang, Y.Y., Chan, D.W.: Proteomics and Bioinformatics Approaches for Identification of Serum Biomarkers to Detect Breast Cancer. Clinical Chemistry 48, 1296–1304 (2002)

    Google Scholar 

  7. Quinlan, J.R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    Article  MATH  Google Scholar 

  8. Abonyi, J., Szeifert, F.: Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers. Pattern Recognition Letters 24, 2195–2207 (2003)

    Article  MATH  Google Scholar 

  9. Setiono, R.: Generating Concise and Accurate Classification Rules for Breast Cancer Diagnosis. Artificial Intelligence in Medicine 18, 205–219 (2000)

    Article  Google Scholar 

  10. Huang, Y.L., Chen, D.R.: Support Vector Machines in Sonography Application to Decision Making in the Diagnosis of Breast Cancer. J. Clin. Imaging 29, 179–184 (2005)

    Article  Google Scholar 

  11. Delen, D., Walker, G., Kadam, A.: Predicting Breast Cancer survivability: a Comparison of Three Data Mining Methods. Artificial Intelligence in Medicine 34, 113–127 (2005)

    Article  Google Scholar 

  12. van’t Veer, L.J., Dai, H.Y., van de Vijver, M.J., et al.: Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature 415, 530–536 (2002)

    Google Scholar 

  13. Choudhary, A., Brun, M., Hua, J.P., et al.: Genetic Test Bed for Feature Selection. Bioinformatics 22, 837–842 (2006)

    Article  Google Scholar 

  14. Hadjiiski, L., Sahiner, B., Chan, H.P.: Advances in Computer-aided Diagnosis for Breast Cancer. Curr. Opin. Obstet. Gynecol 18, 64–70 (2006)

    Article  Google Scholar 

  15. Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, X., Chen, Y.Z.: SVM-Prot: Web-based Support Vector Machine Software for Functional Classification of a Protein from its Primary Sequence. Nucleic Acids Res. 31, 3692–3697 (2003)

    Article  Google Scholar 

  16. Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, Y.Z.: Enzyme Family Classification by Support Vector Machines. Proteins 55, 66–76 (2004)

    Article  Google Scholar 

  17. Cai, C.Z., Wang, W.L., Sun, L.Z., Chen, Y.Z.: Protein Function Prediction via Support Vector Machine Approach. Mathematical Biosciences 185, 111–122 (2003)

    Article  MATH  Google Scholar 

  18. Tan, S.B.: Neighbor-weighted K-nearest Neighbor for Unbalanced Text Corpus. Expert Systems with Applications 28, 667–671 (2005)

    Article  Google Scholar 

  19. Yang, Z.R., Platt, M.B., Platt, H.D.: Probabilistic Neural Networks in Bankruptcy Prediction. Journal of Business Research 44, 67–74 (1999)

    Article  Google Scholar 

  20. Thubthong, N., Kijsirikul, B.: Support Vector Machine for Thai Phoneme Recognition, International Journal of Uncertainty. Fuzziness and Knowledge-Based Systems 9, 803–813 (2001)

    MATH  Google Scholar 

  21. Drucker, H., Wu, D.H., Vapnik, V.N.: Support Vector Machines for Spam Categorization. IEEE Transactions on Neural Networks 10, 1048–1054 (1999)

    Article  Google Scholar 

  22. Liong, S.Y., Sivapragasam, C.: Flood Stage Forecasting with Support Vector Machines. J. Am. Water Resour. As. 38, 173–186 (2002)

    Article  Google Scholar 

  23. Wang, Y.J., Chua, C.S., Ho, Y.K.: Facial Feature Detection and Face Recognition From 2D And 3D Images. Pattern Recogn Lett. 23, 1191–1202 (2002)

    Article  MATH  Google Scholar 

  24. Doniger, S., Hofmann, T., Yeh, J.: Predicting Cns Permeability Of Drug Molecules: Comparison Of Neural Network and Support Vector Machine Algorithms. J. Comput. Biol. 9, 849–864 (2002)

    Article  Google Scholar 

  25. Cao, L.J., Tay, F.: Support Vector Machine With Adaptive Parameters in Financial Time Series Forecasting. IEEE T. Neural Network 14, 1506–1518 (2003)

    Article  Google Scholar 

  26. Hong, J.H., Cho, S.B.: Lymphoma Cancer Classification using Genetic Programming with SNR Features. In: Keijzer, M., O’Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 78–88. Springer, Heidelberg (2004)

    Google Scholar 

  27. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  28. Cai, C.Z., Wang, W.L., Chen, Y.Z.: Support Vector Machine Classification Of Physical and Biological Datasets. International Journal of Modern Physics C 14, 575–585 (2003)

    Article  Google Scholar 

  29. Specht, D.F.: Probabilistic Neural Networks for Classification, Mapping or Associative Memory. IEEE Int. Conf. Neural Network 1, 525–532 (1988)

    Article  Google Scholar 

  30. Wolberg, W.H., Street, W.N., Heisey, D.H., Mangasarian, O.L.: Computerized Breast Cancer Diagnosis and Prognosis from Fine-Needle Aspirates. Arch. Surg. 130, 511–516 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, Q., Cai, C., Xiao, H., Liu, X., Wen, Y. (2007). Diagnosis of Breast Tumours and Evaluation of Prognostic Risk by Using Machine Learning Approaches. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74282-1_141

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74282-1_141

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74281-4

  • Online ISBN: 978-3-540-74282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics