Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2))

Included in the following conference series:

Abstract

Hypervolume indicator is a commonly accepted quality measure for comparing Pareto approximation set generated by multi-objective optimizers. The best known algorithm to calculate it for n points in d-dimensional space has a run time of O(n d/2) with special data structures. This paper presents a recursive, vertex-splitting algorithm for calculating the hypervolume indicator of a set of n non-comparable points in dā€‰>ā€‰2 dimensions. It splits out multiple children hyper-cuboids which can not be dominated by a splitting reference point. In special, the splitting reference point is carefully chosen to minimize the number of vertices of the child hyper-cuboid. The complexity analysis shows that the proposed algorithm achieves \(O((\frac{d}{2})^n)\) time and O(dn 2) space complexity in the worst case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fleischer, M.: The Measure of Pareto Optima. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519ā€“533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117ā€“132 (2003)

    Article  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms ā€” A Comparative Study. In: Eiben, A.E. (ed.) Parallel Problem Solving from Nature V, pp. 292ā€“301. Springer, Amsterdam (1998)

    Chapter  Google Scholar 

  4. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257ā€“271 (1999)

    Article  Google Scholar 

  5. Zitzler, E., Brockhoff, D., Thiele, L.: The Hypervolume Indicator Revisited: On The Design of Pareto-Compliant Indicators Via Weighted Integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862ā€“876. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. While, L., Bradstreet, L., Barone, L., Hingston, P.: Heuristics for Optimising the Calculation of Hypervolume for Multi-objective Optimisation Problems. In: The 2005 IEEE Congress on Evolutionary Computation vol. 3, pp. 2225ā€“2232 (2005)

    Google Scholar 

  7. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation 10(1), pp. 29ā€“38 (2006)

    Google Scholar 

  8. Fonseca, C.M., Paquete, L., nez, M.L.I.: An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator. In: IEEE Congress on Evolutionary Computation (CEC 2006), pp. 1157ā€“1163 (2006)

    Google Scholar 

  9. Beume, N., Rudolph, G.: Faster S-Metric Calculation by Considering Dominated Hypervolume as Kleeā€™s Measure Problem. In: Kovalerchuk, B. (ed.) Proceedings of the Second IASTED Conference on Computational Intelligence, pp. 231ā€“236. ACTA Press, Anaheim (2006)

    Google Scholar 

  10. Edelsbrunner, H., Overmars, M.H.: Batched dynamic solutions to decomposable searching problems. Journal of Algorithms 6(4), 515ā€“542 (1985)

    Article  MATH  Google Scholar 

  11. Overmars, M.H., Yap, C.K.: New upper bounds in Kleeā€™s measure problem. SIAM Journal on Computing 20(6), 1034ā€“1045 (1991)

    Article  MATH  Google Scholar 

  12. Fredman, M.L., Weide, B.: The complexity of computing the measure of āˆŖā€‰[a i ,b i ]. Communications of ACM 21, 540ā€“544 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Q., Ding, S. (2007). Novel Algorithm to Calculate Hypervolume Indicator of Pareto Approximation Set. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74282-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74282-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74281-4

  • Online ISBN: 978-3-540-74282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics