Skip to main content

Subspace KDA Algorithm for Non-linear Feature Extraction in Face Identification

  • Conference paper
Computational Intelligence and Security (CIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4456))

Included in the following conference series:

  • 1010 Accesses

Abstract

Kernel discriminant analysis (KDA) method is a promising approach for non-linear feature extraction in face identification tasks. However, as a linear algorithm to address nonlinear problem, Fisher discriminant analysis (FDA) approach will not give a satisfactory performance. Moreover, FDA usually suffers from small sample size (S3) problem. To overcome these two shortcomings in FDA method, Shannon wavelet kernel based subspace FDA (SKDA) algorithm is developed in this paper. Two public databases such as FERET and CMU PIE databases are selected for evaluation. Comparing with the existing kernel based FDA-based methods, the proposed method gives superior results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  3. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 228–233 (2001)

    Article  Google Scholar 

  4. Lu, J., Plataniotis, K.N., Ventsanopoulos, A.N.: Face recognition using kernel discriminant analysis algorithms. IEEE Trans. on Neural Network 14(1), 117–126 (2003)

    Article  Google Scholar 

  5. Chen, W.S., Yuen, P.C., Huang, J.: A New Regularized Linear Discriminant Analysis Methods to Solve Small Sample Size Problems. Int. J. Pattern Recognit. Artif. Intell. 19(7), 917–936 (2005)

    Article  Google Scholar 

  6. Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Component-based subspacec linear discriminant analysis method for recognition of face images with one training sample. In: Optical Engineering, vol. 44(5) (2005)

    Google Scholar 

  7. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel Fisher Discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 230–244 (2005)

    Article  Google Scholar 

  8. Chen, W.S., Yuen, P.C., Huang, J., Dai, D.Q.: Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B 35(3), 659–669 (2005)

    Article  Google Scholar 

  9. Chen, W.S., Yuen, P.C., Huang, J., Lai, J.H.: Face Classification based on Shannon Wavelet Kernel and Modified Fisher Criterion. In: Proceeding of the 7th IEEE international conference on automatic face and gesture recognition, April 10-12, 2006 pp. 467–474 (2006)

    Google Scholar 

  10. Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Choosing Parameters of Kernel Subspace-LDA for Recognition of Face Images under Pose and Illumination Variations. In: IEEE Transactions on Systems, Man and Cybernetics, Part B (2007) (accepted to be published)

    Google Scholar 

  11. Xiong, H.L., Swamy, M.N.S., Ahmad, M.O.: Two-dimensional FLD for face recognition. Pattern Recognition 38(7), 1121–1124 (2005)

    Article  Google Scholar 

  12. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. and Machine Intell 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  13. Meyer, Y.: Wavelets and operators. Cambridge Univ. Press, Cambridge (1993)

    Book  Google Scholar 

  14. Daubechies, I.: Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, WS., Yuen, P.C., Lai, J. (2007). Subspace KDA Algorithm for Non-linear Feature Extraction in Face Identification. In: Wang, Y., Cheung, Ym., Liu, H. (eds) Computational Intelligence and Security. CIS 2006. Lecture Notes in Computer Science(), vol 4456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74377-4_116

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74377-4_116

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74376-7

  • Online ISBN: 978-3-540-74377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics