Skip to main content

Neurodynamic Analysis for the Schur Decomposition of the Box Problems

  • Conference paper
Computational Intelligence and Security (CIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4456))

Included in the following conference series:

  • 781 Accesses

Abstract

Neurodynamic analysis for solving the Schur decomposition of the box problems is presented in this paper. By constructing a number of dynamic systems, all the eigenvectors of a given matrix pair (A,B) can be searched and thus the decomposition realized. Each constructed dynamical system is demonstrated to be globally convergent to an exact eigenvector of the matrix box pair (A,B). It is also demonstrated that the dynamical systems are primal in the sense of the neural trajectories never escape from the feasible region when starting at it. Compared with the existing neural network models for the generalized eigenvalue problems, the proposed neurodynamic approach has two advantages: 1) it can find all the eigenvectors and 2) all the proposed systems globally converge to the problem’s exact eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazaraa, M.S., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms. John Wiley and Sons, New York (1979)

    MATH  Google Scholar 

  2. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. John Wiley & Sons, New York (1993)

    MATH  Google Scholar 

  3. Cichocki, A., Unbehauen, R.: Neural Networks for Computing Eigenvalues and Eigenvectors. Biolog. Cybernetics 68, 155–164 (1992)

    Article  MATH  Google Scholar 

  4. Feng, F.-Y., Zhang, Q.-J., Liu, H.-L.: A Recurrent Neural Network for Extreme Eigenvalue Problem. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 787–796. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Feng, F.-Y., Xia, Y., Zhang, Q.-J.: A Recurrent Neural Network for Linear Fractional Programming with Bound Constraints. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 369–378. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Golden, R.M.: Mathematical Methods for Neural Network Analysis and Design. MIT Press, London, England (1996)

    Google Scholar 

  7. Golub, G.H., Van loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  8. Hale, J.K.: Ordinary diffential equations. Wiley, New York (1993)

    Google Scholar 

  9. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biolog. Cybernetics 52, 141–152 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Huang, D.S., Horace, H.S.I., Zheru, C.: A neural root finder of polynomials based on root moments. Neural Computation 16, 1721–1762 (2004)

    Article  MATH  Google Scholar 

  11. Huang, D.S.: A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Transactions on Neural Networks 15, 477–491 (2004)

    Article  Google Scholar 

  12. Huang, D.S., Horace, H.S.I., Law Ken, C.K., Zheru, C., Wong, H.S.: A new partitioning neural network model for recursively finding arbitrary roots of higher order arbitrary polynomials. Applied Mathematics and Computation 162, 1183–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE Transaction on Circuits and Systems 35, 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  14. Kinderlehrer, D., Stampcchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic, New York (1980)

    MATH  Google Scholar 

  15. LaSalle, J.: The Stability Theory for Ordinary Differential Equations. J. Differential Equations 4, 57–65 (1983)

    Article  MathSciNet  Google Scholar 

  16. Liao, L.-Z., Qi, H.D., Qi, L.Q.: Neurodynamical Optimization. J. Global Optim. 28, 175–195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, F.-L., Li, Y.-D.: Real-time neural computation of the eigenvector corresponding to the largest eigenvalue of positive matrix. Neuocomputing 7(2), 145–157 (2005)

    Google Scholar 

  18. Liu, L.-J., Wei, W.: Dynamical system for computing largest generalized eigenvalu. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 399–404. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Xia, Y.S., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Transaction on Circuits and Systems II 49(1), 447–458 (2002)

    MathSciNet  Google Scholar 

  20. Xia, Y.S., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Transaction on Neural Networks 9, 1311–1343 (1998)

    Google Scholar 

  21. Zhang, Y., Yan, F., Tang, H.-J.: Neural networks based approach for computing eigenvectors and eigenvalues of symmetric matrix. Comp. and Math. with Appl. 47, 1155–1164 (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Feng, F., Wei, Z. (2007). Neurodynamic Analysis for the Schur Decomposition of the Box Problems. In: Wang, Y., Cheung, Ym., Liu, H. (eds) Computational Intelligence and Security. CIS 2006. Lecture Notes in Computer Science(), vol 4456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74377-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74377-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74376-7

  • Online ISBN: 978-3-540-74377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics