Skip to main content

A Watershed Algorithmic Approach for Gray-Scale Skeletonization in Thermal Vein Pattern Biometrics

  • Conference paper
Computational Intelligence and Security (CIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4456))

Included in the following conference series:

  • 843 Accesses

Abstract

In vein pattern biometrics, analysis of the shape of the vein pattern is the most critical task for person identification. One of best representations of the shape of vein patterns is the skeleton of the pattern. Many traditional skeletonization algorithms are based on binary images. In this paper, we propose a novel technique that utilizes the watershed algorithm to extract the skeletons of vein patterns directly from gray-scale images. This approach eliminates the segmentation stage, and hence prevents any error occurring during this process from propagating to the skeletonization stage. Experiments are carried out on a thermal vein pattern images database. Results show that watershed algorithm is capable of extracting the skeletons of the veins effectively, and also avoids any artifacts introduced by the binarization stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ratha, N.K., Senior, A., Bolle, R.M.: Tutorial on Automated Biometrics. In: Proceedings of International Conference on Advances in Pattern Recognition. March, Rio de Janeiro, Brazil (2001)

    Google Scholar 

  2. Kim, J.O., Lee, W., Hwang, J., Baik, K.S., Chung, C.H.: Lip Print Recognition for Security Systems by Multi-resolution Architecture. Future Generation Computer Systems 20, 295–301 (2004)

    Article  Google Scholar 

  3. Wang, L., Leedham, C.G.: A Thermal Hand Vein Pattern Verification System. In: proceedings of International Conference on Advances in Pattern Recognition. Bath, UK (August 2005)

    Google Scholar 

  4. Lin, C.-L, Fan, K.-C.: Biometric Verification Using Thermal Images Of Palm-dorsa Vein Patterns. IEEE Trans. Circuits and Systems for Video Technology 14(2), 199–213 (2004)

    Article  Google Scholar 

  5. Cross, J.M., Smith, C.L.: Thermographic Imaging of Subcutaneous Vascular Network Of The Back Of The Hand For Biometric Identification. In: Proceedings of IEEE 29th International Carnahan Conference on Security Technology. Sanderstead, Surrey, England (October 1995)

    Google Scholar 

  6. Im, S.-K., Park, H.-M., Kim, S.-W., Chung, C.-K., Choi, H.-S.: Improved Vein Pattern Extracting Algorithm And Its Implementation. In: Digest of technical papers of International Conference on Consumer Electronics (June 2000)

    Google Scholar 

  7. MacGregor, P., Welford, R.: Veincheck: Imaging for security and personnel identification. Advanced Imaging 6(7), 52–56 (1991)

    Google Scholar 

  8. Fujitsu-Laboratories-Ltd. Fujitsu Laboratories Develops Technology For World’s First Contactless Palm Vein Pattern Biometric Authentication System. [Online]. Available: (March 2003), http://pr.fujitsu.com/en/news/2003/03/31.html

  9. Jain, A., Bolle, R.M., Pankanti, S.: Biometrics: Personal Identification In Networked Society. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  10. Gao, Y., Leung, M.K.H.: Line Segment Hausdorff Distance on Face Matching. Pattern Recognition 35, 361–371 (2002)

    Article  MATH  Google Scholar 

  11. Yim, P.J., Choyke, P.L., Summers, R.M.: Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. Medical Imaging 19(6), 576–586 (2000)

    Article  Google Scholar 

  12. Suen, C.Y., Zhang, T.Y.: A Fast Parallel Algorithm for Thinning Digital Patterns. Communications of the ACM 27(3) (March 1984)

    Google Scholar 

  13. Guo, Z., Hall, R.W.: Fast fully parallel thinning algorithms. Comput. Vision Graphics Image Process: Image Understanding 55, 317–328 (1992)

    MATH  Google Scholar 

  14. Bieniek, A., Moga, A.: An efficient watershed algorithm based on connected components. Journal of Pattern Recognition 33(6), 907–916 (2000)

    Article  Google Scholar 

  15. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Inc, New Jersey (2002)

    Google Scholar 

  16. Yu, H.G.: Morphologcail image segmentation for co-aligned multiple images using watersheds transformation. Master’s thesis, The Florida State University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Leedham, G. (2007). A Watershed Algorithmic Approach for Gray-Scale Skeletonization in Thermal Vein Pattern Biometrics. In: Wang, Y., Cheung, Ym., Liu, H. (eds) Computational Intelligence and Security. CIS 2006. Lecture Notes in Computer Science(), vol 4456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74377-4_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74377-4_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74376-7

  • Online ISBN: 978-3-540-74377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics