
On Modal Refinement and Consistency

Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski

Department of Computer Science, Aalborg University, Denmark
{kgl,ulrik,wasowski}@cs.aau.dk

Abstract. Almost 20 years after the original conception, we revisit sev-
eral fundamental questions about modal transition systems. First, we
demonstrate the incompleteness of the standard modal refinement us-
ing a counterexample due to Hüttel. Deciding any refinement, complete
with respect to the standard notions of implementation, is shown to be
computationally hard (co-NP hard). Second, we consider four forms of
consistency (existence of implementations) for modal specifications. We
characterize each operationally, giving algorithms for deciding, and for
synthesizing implementations, together with their complexities.

1 Background and Overview

Modal transition systems (MTSs) are a generalization of labeled transition sys-
tems (LTSs). Similarly to LTSs modal transition systems use labeled transitions
between states to model behaviors. Unlike LTSs, they distinguish allowed and
required behaviors (over- and under-approximations), which makes them a suit-
able semantic model for abstraction in program analysis and verification.

MTSs, originally introduced by Larsen and Thomsen almost 20 years ago [1],
have since been applied in program analysis [2, 3], model checking [4, 5], verifi-
cation [6, 7], equation solving [8], interface theories [9], software product lines [9,
10] and model merging [11, 12]. Foundational work on modal transition systems
included extensions to modal hybrid systems [13], timed modal specifications
[14–16] and variants of disjunctive MTSs [8, 17, 18]. Surprisingly though, several
fundamental questions about the theory of MTSs have never been addressed.

Refinement relations for modal transition systems are defined contravari-
antly. If S refines T then all allowed behaviors of S need to be allowed in T ,
while all required behaviors of T need also be required by S. An implementation

is an MTS that has been completely specified, i.e. all its allowed behavior is also
required, leaving no further choice for refinement. One fundamental issue for a
modal refinement is to see whether it characterizes the inclusion of implementa-
tion sets thoroughly: can one for an MTS S refining an MTS T imply that all
implementations of S are also implementations of T ? And vice-versa?

Standard modal refinement is sound, but not complete in this sense. Meaning
that here exist MTSs for which implementation inclusion holds, but which do not
refine each other. We show that deciding any sound and complete refinement,
preserving the set of implementations of standard modal refinement or weak

modal refinement is co-NP hard. We conjecture the same for may-weak modal
refinement [9] and branching refinement [10].

Modal transition systems of [1] are syntactically consistent, meaning that
any required transition must also be allowed. This effectively disallows reasoning
about inconsistencies, which is necessary for proper treatment of logical connec-
tives in the context of modal transition systems (for example one would like to
be able to express a modal transition system expressing a conjunction of two
other MTSs that represent contradictory specifications). On the other hand, in
[9], we have observed that other, more behavioral, notions of consistency might
be useful. We have shown that systems that are observationally consistent with
respect to some set of hidden actions, can be decomposed using parallel decom-
position. We used this observation to build a product line theory in which modal
transition systems play the role of behavioral variability models.

We believe that consistency should be decoupled from the basic definition of
a modal transition system. In our opinion understanding a notion of consistency
requires relating it to a notion of satisfiability, as typically done in logics. For
example: a propositional formula is consistent if there exists a truth assignment
on which the formula evaluates to true. In our context, modal transition sys-
tems play the role of formulæ, truth assignments are concrete implementations,
and a refinement preorder is our satisfaction relation. Consequently, instead of
proposing ad hoc criteria for consistency, we define consistency of a specification
semantically as existence of a concrete implementation refining it.

Altogether we discuss four modal refinements and their induced consistencies.
For each of these we define consistency semantically and find a computable
criterion (a consistency relation) for deciding it. Then we study the complexity
of consistency and the criterion. The results are summarized in Table 1.

Our choice of refinements and consistencies for this study is driven by exist-
ing work. We choose one known consistency (syntactic consistency) that have
not been characterized using a refinement, and three known refinements (strong,
may-weak and weak modal refinement) for which the related notions of consis-
tency had never been formulated. However, we believe that consistency is not
only of theoretical interest. Inconsistencies in specifications typically indicate
modeling errors and thus procedures for detecting them find use in tools.

The contents of this paper are: the definition of modal transition systems
and their refinement (Section 2), complexity analysis of completeness of this
refinement (Section 3), a discussion of consistency notions induced by four modal
refinements (Sections 4–7), a summary and a list of open problems (Section 8).

Table 1. Summary of consistency-related results.

Modal refinement Consistency Lower bound Upper bound Section

syntactic syntactic consistency [1] linear time linear time 4

strong [1] strong consistency NP-hard exponential time 5

weak [19] weak consistency NP-hard exponential time 6

may-weak [9] may-weak consistency NP-hard exponential time 7

2 Modal Transition Systems

We introduce the basics following Larsen and Thomsen [1]. Assume a global set
of actions act and write act τ for act ∪ {τ}, where τ is a distinct internal action,
such that τ /∈ act. A modal transition system is a triple S = (statesS ,−−→S , 99K

S),
where statesS is a set of states, also known as specifications [1] or processes.
Then −−→S ⊆ statesS × act τ × statesS is a must-transition relation representing
required transitions, and 99K

S ⊆ statesS × act τ × statesS is a may-transition
relation representing allowed transitions.

In general the sets of states and transitions may be infinite, but we restrict
ourselves to finite state systems with finite sets of actions in this paper. For
simplicity we write s a−→Ss′ iff (s, a, s′) ∈ −−→S , and s a

99K
Ss′ iff (s, a, s′) ∈ 99K

S .
Larsen and Thomsen originally designed modal transition systems to be

syntactically consistent meaning that all required transitions are also allowed:

−−→S ⊆ 99K
S . Already in [14] Larsen lifts this restriction, with the argument that

any sufficiently expressive specification language needs to be able to specify in-
consistent specifications. This means that our transition systems are very much
like mixed transition systems of Dams [20]. In Section 3 we follow the syntactic
consistency requirement, while we relax it in later sections, generalizing the no-
tion of consistency to strong and weak behavioral preorders. Regardless whether
the consistency assumption is in place or not, we always separate the two transi-
tion relations explicitly to avoid confusion. A solid arrow represents just a must
transition, without the possible related may transition. We draw both arrows
when talking about a syntactically consistent must transition.

A modal transition system I is an implementation when the two transition
relations coincide, −−→I = 99K

I . We use capital I to denote implementations and
always state explicitly whenever a modal transition system is an implementation.

The following is the standard notion of strong refinement for modal transition
systems introduced in [1] and generally accepted ever since:

Definition 1 (Modal Refinement). For a pair of modal transition systems

S and T a binary relation R ⊆ statesS × statesT is a modal refinement between

states of S and T iff for all (s, t) ∈ R and all actions a it holds that:

for all t′ ∈ statesT such that t a−→T t′

there exists an s′ ∈ statesS such that s a−→Ss′ and (s′, t′) ∈ R,
for all s′ ∈ statesS such that s a

99K
Ss′

there exists a t′ ∈ statesT such that t a
99K

T t′ and (s′, t′) ∈ R.

We say that a state s ∈ statesS refines a state t ∈ statesT , written s ≤m t, iff

there exists a modal refinement containing (s, t).

If −−→T = ∅ then this refinement collapses to regular simulation [21, 22], while it
coincides with bisimulation equivalence [23, 24] if S and T are implementations.

3 Non-thoroughness of Modal Refinement

Already in the eighties there have been rumors of modal refinement being in-
complete. However we were unable to find a published account of this fact, so we

decided to include it here. We shall now define what we mean by completeness,
proceeding to a counterexample witnessing the incompleteness of modal refine-
ment. After this brief introduction we move to the first contribution of the paper:
a discussion of the complexity class of a hypothetical complete refinement.

For a state s ∈ statesS let JS, sK denote

S
s a b

T
t a b

b

a

Fig. 1. JS, sK ⊆ JT, tK and s 6≤m t

the set of all its implementations such that
JS, sK = {(I, i) | i ≤m s and −−→I = 99K

I}.
Modal refinement is known to be sound,
with respect to implementation inclusion:
for s ∈ statesS∧t ∈ statesT , if s ≤m t then
also JS, sK ⊆ JT, tK, which follows directly

from transitivity of ≤m. However ≤m is not complete in this sense: there exist
specifications S and T , with states s, t, such that JS, sK ⊆ JT, tK but s 6≤m t.
This property of modal refinement is sometimes known as non-thoroughness [25].
Figure 1 presents a counterexample originating in the thesis of Hüttel [26, p. 32],
also found in the thesis of Xinxin [27, p. 87] and in [18], albeit disguised in the
context of disjunctive modal transition systems [8]1. It contains two specifications
S, T . It is a simple exercise to see that JS, sK = JT, tK, while s 6≤m t.

3.1 A Thorough Refinement is Co-NP Hard

Despite the non-thoroughness (incompleteness) of modal refinement its useful-
ness has never been questioned. This is probably because modal refinement is a
natural generalization of both simulation and bisimulation and because it can be
established efficiently (in time polynomial in the size of the transition systems).
By showing that any complete refinement preserving precisely the same set of
implementations as ≤m cannot be decided in polynomial time (unless P=NP),
we give yet another argument in favor of ≤m.

We show co-NP hardness by reducing 3-Dnf-Tautology to checking a
sound and complete modal refinement in the above sense. Consider a proposi-
tional formula ϕ over n variables x1, . . . , xn. It is clear that ϕ is a tautology iff
true ⇒ ϕ is a tautology. We will show how to construct, in polynomial time,
a modal transition systems Tϕ (representing a tautology over x1 . . . xn) and Sϕ

(representing ϕ), so that true ⇒ ϕ is a tautology iff JTϕ, trueK ⊆ JSϕ, ϕK, for se-
lected initial states true and ϕ of Tϕ and Sϕ respectively. For simplicity we will
assume that all clauses of ϕ are satisfiable. Satisfiability of a clause consisting
of three conjunctions can be decided in constant time. Unsatisfiable clauses can
thus be removed from ϕ in polynomial time, before we construct Tϕ and Sϕ. We
choose the following states and actions for Sϕ:

statesSϕ
= {ϕ, c1, . . . , cm,0} {a, x1, . . . , xn} ⊆ act , (1)

where ci are clauses of ϕ, while 0 and a are fresh names.
First we explain how a single literal can be represented as a state with at most

n + 1 outgoing transitions. For a positive literal xi we introduce a state xi with
a required transition xi

xi−−→0 and allowed transitions xi
xk
99K0 for all k = 1 . . n.

1 We thank Michael Huth, Harald Fecher, Heiko Schmidt and one of the anynonymous
reviewers for helping to track down its origins.

(a) xi 0
xi

x1

x2

xn...
(b) ¬xi

0
x1

xi−1

xi+1

xn......
(c)

ϕ

c1

c2

cm−1

cm

a

a

a

a ...
(d)

true t
0

a
a

x1

x2

xn−1

xn...
Fig. 2. Representing (a) a positive literal, (b) a negative literal, (c) a 3-DNF
formula ϕ = c1 ∨ · · · ∨ cm and (d) a tautology over variables x1 . . . xn.

For a negative literal ¬xi we allow no outgoing must transitions and create may
transitions (¬xi)

xk
99K0 for all k 6= i. Positive assignments are represented by must

transitions, and negative assignments are represented by lack of may transitions.
Assignments with no effect on satisfaction of the formula are modeled by may
transitions with no corresponding must transitions. See Figure 2ab.

Now generalize this to conjunctive clauses of a 3-DNF formula. A clause
l1∧l2∧l3 is translated into a state labeled l1∧l2∧l3 with the following transitions:

1◦ (l1 ∧ l2 ∧ l3) xi−−→Sϕ0 iff lk = xi for some k = 1 . . 3.

2◦ (l1 ∧ l2 ∧ l3)
xi

99K
Sϕ0 iff lk 6= ¬xi for all k = 1 . . 3.

Since we only consider satisfiable clauses, modal transition systems created this
way are syntactically consistent (all required transitions are allowed). A satisfy-
ing truth assignment to l1 ∧ l2 ∧ l3 can be extracted from any implementation I
refining the state with the same label—just set xi to true iff I xi−−→ and set xi to
false otherwise. Similarly we can construct an implementation refining l1∧ l2∧ l3
given any satisfying assignment to this clause.

A 3-DNF formula ϕ = c1 ∨ . . . ∨ cm is

ϕ
0

x1 ∧ ¬x2 ∧ ¬x3

¬x1∧x2∧x3

x1 ∧ ¬x2 ∧ x3

a

a

a

x1

x1

x2

x2

x3

x3

x1

x1

x3

x3

Fig. 3. Reduction for ϕ = (x1∧¬x2∧
x3)∨(¬x1∧x2∧x3)∨(x1∧¬x2∧¬x3).

represented using a state labeled ϕ and
may transitions to its clauses: ϕ a

99K
Sϕci

for i = 1 . .m. No must transitions are
generated. See Figure 2c and 3. States
labeled ci represent processes resulting
from translation of the individual clauses
as presented above.

Observe that each satisfying assign-
ment to formula ϕ has a correspond-
ing deterministic implementation of Sϕ.

Also each implementation of Sϕ embeds at most one satisfying assignment to
ϕ extracted using the same rules as discussed for clauses (one per each nonde-
terministic choice in the initial state of the implementation). Clearly Sϕ can be
constructed in time polynomial in the size of ϕ.

We now consider construction of Tϕ. First let statesTϕ
= {true, tϕ,0}. We

also create the following transitions: true a−→Tϕtϕ, true a
99K

Tϕtϕ, and tϕ
xi

99K
Tϕ0 for

all variables xi of ϕ (See Fig. 2d). Clearly Tϕ can be constructed in time at most
polynomial in size of ϕ.

The following lemma states the correctness of our reduction.

Lemma 2. A 3-DNF formula ϕ with all satisfiable clauses is a tautology iff

JTϕ, trueK ⊆ JSϕ, ϕK.

Proof. We first consider the direction right to left, i.e. assume that JTϕ, trueK ⊆
JSϕ, ϕK and take any truth assignment ̺ to variables xi of ϕ. We construct a
deterministic implementation I̺ in the following way: statesI̺

= {t, ̺,0}, where
there are two transition from t to ̺: t a−→̺ ∧ t a

99K̺ and for all xi such that
̺(xi) = true: ̺ xi−−→0 ∧ ̺ xi

99K0. Due to the construction of our reduction this
means that ̺ satisfies ϕ. Since for any assignment ̺ we can conclude that ϕ
holds, ϕ is a tautology.

Now consider the claim of the lemma from left to right. We address its con-
trapositive. Assume that there exists an implementation I and its state t such
that t ≤m true, but t 6≤m ϕ. We want to show that ϕ is not a tautology. Observe
that since t 6≤m ϕ there must exist a state s ∈ statesI such that t a−→s and for
all clause states ci of Sϕ it is the case that s 6≤m ci. But this means that the
assignment represented by s (present xi-transitions give rise to xi = true, absent
to xi = false) falsifies ϕ meaning that ϕ is not a tautology. ⊓⊔

Theorem 3. The problem of deciding JT, tK ⊆ JS, sK for states t and s of arbi-

trary modal transition systems T and S respectively is co-NP hard.

Co-NP hardness follows from the above reduction and co-NP hardness of 3-

DNF-Tautology. The same reduction can be used to show that the thorough
refinement induced by weak modal refinement (Section 6) is also co-NP hard to
decide. We omit that proof as the argument is rather similar to the above.

4 Syntactic Consistency and Syntactic Refinement

From now on we relax the syntactic consistency requirement presented in Sec-
tion 2, and allow reasoning about systems for which −−→ 6⊆ 99K. We will introduce
a syntactic refinement ⊆m with its induced notion of consistency and prove that
it is (almost) precisely characterized by the syntactic consistency. These results
are very simple, but we include them for three reasons. First, we cannot avoid dis-
cussing the most well known notion of consistency for modal transition systems
(a notion that had never been characterized using a refinement relation). Second,
we can show a refinement inducing this consistency (a refinement that had never
been explicitly linked to any consistency notion). Third, we want to present all
ingredients of a consistency study using a simple example: a refinement, its in-
duced consistency, operational characterization in form of a consistency relation,
and a coincidence proof. Later sections will follow exactly the same pattern.

Definition 4 (Syntactic Refinement). For two modal transition systems S
and T a syntactic refinement R is a partial injective function on statesS into

statesT such that for all pairs (s, t), t = R(s), and all actions a it holds that

for all t′ ∈ statesT such that t a−→T t′

there exists an s′ ∈ statesS such that s a−→Ss′ and t′ = R(s′),
for all s′ ∈ statesS such that s a

99K
Ss′

there exists a t′ ∈ statesT such that t a
99K

T t′ and t′ = R(s′).

A state s is said to be a syntactic refinement of a state t, written s ⊆m t, if there

exists a syntactic refinement function R such that t = R(s).

Intuitively this refinement establishes that the may-transition graph of S is a
subgraph of the may-transition graph of T and that the must-transition graph
of T is a subgraph of the must-transition graph of S.

Definition 5 (Syntactic Consistency). A state s ∈ statesS is syntactically

consistent iff there exists an implementation I and its state sI such that sI ⊆m s.

We claim that this notion of semantic consistency (almost) coincides with the
one presented in Section 2. For the sake of uniformity let us reformulate that
definition using an explicit notion of consistency relation:

Definition 6 (Syntactic Consistency Relation). Given a modal transition

system S, a binary relation S ⊆ statesS × statesS is a syntactic consistency

relation on states of S iff for each state s if (s, s) ∈ S and each action a ∈ act it

holds that whenever s a−→s′ for some s′ ∈ statesS then also s a
99Ks′ and (s′, s′) ∈ S.

For a syntactic consistency relation S and a state s ∈ statesS such that
(s, s) ∈ S, we synthesize an implementation IS with a state sI such that sI ⊆m s.
Take states of IS to be consistent states of S: statesIS = {p ∈ statesS | (p, p) ∈ S}
and sI = s. The transition relation of IS is the must transition relation of S
projected on states of IS : −−→IS = 99K

IS = −−→S ∩ (statesIS × act τ × statesIS).

Theorem 7 (Soundness). If there exists a syntactic consistency relation con-

taining a state s of S then s is a syntactically consistent state in the sense of

Definition 5. Moreover the implementation IS constructed above is one of its

refinements: sI ≤m s.

It turns out that syntactic consistency relations characterize syntactic con-
sistency in the sense of Definition 5 in a complete manner. Given a syntactic
implementation I of a modal transition system S (I ⊆m S) we can construct a
syntactic consistency relation in the following way:

SI = {(q, q) ∈ statesS | exists p ∈ statesI ∧ p ⊆m q} (2)

Theorem 8 (Completeness). Let s be a state of a modal transition system S
and sI be a state of an implementation I such that sI ⊆m s. Then there exists

a syntactic consistency relation for S containing (s, s), and SI is one of such.

Since establishing consistency of models is a useful feature in modeling tools,
we remark that the cost of deciding existence of syntactic implementations (via
consistency relations) for a state s ∈ statesS is at most (and at least) linear in

the size of S. The algorithm corresponds to a traversal of the must-transition
graph starting in s, and checking the consistency requirement in each state.

Syntactic consistency relations characterize syntactic consistency in the sense
of [1] almost precisely. In fact the two notions coincide if all states of S are
reachable from s via must transitions. Otherwise Definitions 5 and 6 allow in-
consistencies in unreachable parts, which has not been taken into account in [1].

5 Strong Modal Refinement and Strong Consistency

In Section 2 we have recalled the notion of (strong) modal refinement. Now we
introduce its induced notion of consistency and characterize it operationally.

Definition 9 (Strong Consistency). A state s of a modal transition system

S is strongly consistent iff there exists an implementation I and its state sI such

that sI ≤m s.

In order to give an operational characterization of strong consistency we need
to lift the transition relations to sets of states. For sets σ, σ′ ⊆ statesS we write:

σ a−→
⌊S⌋σ′ iff ∃s∈σ. ∃s′∈σ′. s a−→Ss′ , (3)

σ a
99K

⌊S⌋σ′ iff ∀s∈σ. ∃s′∈σ′. s a
99K

Ss′ . (4)

Definition 10 (Strong Consistency Relation). Given a modal transition

system S, a relation B ⊆ P(statesS) is a strong consistency relation on statesS

iff for all actions a ∈ act and all σ ∈ B the following condition is satisfied:

whenever s a−→Ss′ for some s∈σ and some s′∈statesS

then also σ a−→
⌊S⌋σ′ and σ a

99K

⌊S⌋σ′ for some σ′∈B containing s′.

Elements of B are called consistency classes. B is a strong consistency relation

for a state s ∈ statesS iff it contains a consistency class σs such that s ∈ σs.

Given a consistency relation B for a state s ∈ statesS we can synthesize an
implementation IB with a state sI ∈ statesIB , such that sI ≤m s. Take the
consistency classes of B, to be the states of IB: statesIB = B and sI be the class
σs containing s. Both transition relations of IB equal the intersection of must

and may transition relations of S lifted to consistency classes of B:

σ a−→IBσ′ and σ a
99K

IBσ′ iff σ a−→
⌊S⌋σ′ and σ a

99K

⌊S⌋σ′ . (5)

Theorem 11 (Soundness). If there exists a consistency relation B for a modal

transition system S then S is strongly consistent in the sense of Definition 9.

Moreover IB constructed as above is one of its refinements: sI ≤m S.

Strong consistency relations characterize strong consistency in a sound and
complete manner. Given a state sI of an implementation I refining a state s ∈
statesS (sI ≤m s) we can construct a consistency relation BI for S following (6):

BI = {σp ⊆ statesS | p ∈ statesI and σp 6= ∅ and ∀q ∈ σp. p ≤m q} (6)

Observe that the σp sets above are not necessarily maximal.

(a)

c3

x1
∨

¬x2
∨

¬x3

x1

¬x2

¬x3

1

a a a

a
a

a

a

(b)

c3

x1
∨ ¬x2

∨ ¬x3

1

x1

¬x2

¬x3

c2

¬x1
∨ x2

∨ x3

¬x1

x2

x3
c1

x1
∨ ¬x2

∨ x3

Fig. 4. Representing (a) a disjunctive clause and (b) a translation for ϕ.

Theorem 12 (Completeness). Let s ∈ statesS and let I be an implementa-

tion, let sI ∈ statesI and sI ≤m s. Then there exists a consistency relation for

the state s. Also relation BI defined above is one of such relations.

Definition 10 can be interpreted operationally giving a simple exponential
fixpoint algorithm: start with a singleton class containing s and apply the rule
generating classes until a fixpoint is reached.

We demonstrate that the problem of deciding strong consistency is in fact
NP-hard using a reduction from 3-Cnf-Sat. Let ϕ = c1 ∧ . . . ∧ cm be a 3-CNF
formula over variables x1, . . . , xn. Construct a modal transition system Sϕ such
that its state labeled cm is consistent iff ϕ is satisfiable. The states of Sϕ are
literals of ϕ, a 0 state, a 1 state (a state allowing any behavior: 1 xi

99K
Sϕ1 for all

i = 1 . . n and 1 a
99K

Sϕ1), plus a polynomial number of auxiliary states. We shall
use an action per each variable xi and one auxiliary action a.

Literals in ϕ are translated to states using the principle shown in Figure 2ab.
A disjunction of three literals l1∨l2∨l3 is represented by a state labeled (l1∨l2∨l3)
such that (l1 ∨ l2 ∨ l3) a−→Sϕ1 and (l1 ∨ l2 ∨ l3)

a
99K

Sϕ lk for all k = 1 . . 3. Now each
clause ci is represented by a state labeled ci followed by a sequence of exactly i
may a-transitions leading to the state representing the disjunction. For regularity
we assume that there is a special true clause c0, that we translate to 1. Figure 4a
shows the result of translating a clause c3 = x1 ∨ ¬x2 ∨ ¬x3. Recall that states
labeled with literals are actually results of translation of Figure 2ab.

Now the top-level conjunction is translated inductively. First representations
of c1, . . . , cm are created as above, then they are conjoined using must transitions.
The ith clause is conjoined by a must transition from ci to ci−1: ci

a−→Sϕci−1.
Note that we add at most a quadratic number of auxiliary states this way (and
a similar number of transitions). After conjoining cm we obtain a representation
of the whole formula. Figure 4b presents a complete translation for a formula
ϕ = (x1∨¬x2∨x3)∧(¬x1 ∨x2∨x3)∧(x1∨¬x2∨¬x3). All unlabeled transitions
should actually be labeled by a (removed to decrease clutter).

It is not hard to see that if the cm state has an implementation then it
actually has a state that satisfies the requirements of all the states representing
disjunctions, and thus it induces a satisfiable assignment to ϕ.

6 Weak Refinement and Weak Consistency

We shall now discuss what is considered a classic form of a weak modal refinement
(obtained by transforming modal refinement in the same way as bisimulation is
transformed in order to obtain its weak form; to the best of our knowledge first
published by Hüttel and Larsen in [19]). The definition uses a notion of weak
transition relations that we introduce first. We shall write:

s a−−→∗
Ss′ iff s (τ−→S)∗ a−→S (τ−→S)∗ s′ (7)

s a
99K∗

Ss′ iff s (τ
99K

S)∗ a
99K

S (τ
99K

S)∗ s′ , (8)

where R∗ denotes zero or more transitive applications of a binary relation R.
Finally we write s â−−→∗

Ss′ whenever s a−−→∗
Ss′ and a 6= τ , or whenever s (τ

−−→S)∗ s′

and a = τ . Similarly for the may transition relation.

Definition 13 (Weak Modal Refinement). Let S, T be modal transition

systems. A binary relation R ⊆ statesS × statesT is a weak modal refinement iff

for each pair (s, t) ∈ R and each action a ∈ act τ it holds that:

for all t′ ∈ statesT such that t a−→T t′

there exists s′ ∈ statesS such that s â−−→∗
Ss′ and (s′, t′) ∈ R,

for all s′ ∈ statesS such that s a
99K

Ss′

there exists t′ ∈ statesT such that t â
99K∗

T t′ and (s′, t′) ∈ R.

We say that a state s ∈ statesS weakly refines a state t ∈ statesT , written s ≤∗
m t

iff there exists a weak modal refinement containing (s, t).

Definition 14 (Weak Consistency). A state s of a modal transition system

S is weakly consistent iff there exists an implementation I and its state sI such

that sI ≤∗
m s.

We characterize weak consistency using consistency relations as before. In
order to do this we need to lift weak transition relations 99K∗ and −→∗ to sets
of states. For two sets of states σ, σ′ ⊆ statesS write:

σ â−−→∗
⌊S⌋σ′ iff ∃s∈σ. ∃s′∈σ′. s â−−→∗

Ss′ , (9)

σ â
99K∗

⌊S⌋σ′ iff ∀s∈σ. ∃s′∈σ′. s â
99K∗

Ss′ . (10)

Definition 15 (Weak Consistency Relation). Let S be a modal transition

system. A relation O ⊆ P(statesS) is a weak consistency relation on statesS iff

for any set σ ∈ O, for any state s ∈ σ, and for any action a ∈ act τ it holds that:

whenever s a−→Ss′ for some s′ ∈ statesS

then also σ â−−→∗
⌊S⌋σ′ and σ â

99K∗
⌊S⌋σ′ for some σ′ ∈ O containing s′.

O is a weak consistency relation for a state s ∈ statesS iff it contains a consis-

tency class σs such that starts ∈ σs.

As before, we claim that weak consistency relations (Definition 15) soundly
characterize weak consistency (Definition 14): for a state s ∈ statesS with a
known weak consistency relation O, one can construct a weak implementation
IO containing a state sI such that sI ≤∗

m s. Take states of IO to be consistency
classes of O (statesIO = O), and sI be a class σs containing s. The transition
relations of IO are the intersection of the weak transition relations of S lifted to
consistency classes of O. For all actions a ∈ act τ :

σ a−→IOσ′ and σ a
99K

IOσ′ iff σ â−−→∗
⌊S⌋σ′ and σ â

99K∗
⌊S⌋σ′ . (11)

Theorem 16 (Soundness). Let S be a modal transition system, s ∈ statesS,

and O be a weak consistency relation for s. Then s is weakly consistent and

sI ∈ statesIO is one of its implementations: sI ≤∗
m s.

Consistency relations characterize weak consistency precisely. Assume that a
state s ∈ statesS is refined by a state sI of an implementation I (I ≤∗

m S). Then
one can use this implementation to construct the consistency relation OI :

OI = {σp ⊆ statesS | p ∈ statesI and σp 6= ∅ and ∀q ∈ σp.p ≤∗
m q} (12)

Theorem 17 (Completeness). Let S be a modal transition system, I be an

implementation, and let sI ≤∗
m s for some sI ∈ statesI and s ∈ statesS. Then

there exist weak consistency relations for s, and OI is one of them.

Definition 15 can be interpreted operationally giving

T

0

τ
τ

τ
τ

a

a

b
b

Fig. 5. All imple-
mentations of T
have τ -transitions.

rise to an exponential algorithm for constructing a consis-
tency relation and deciding weak consistency. Weak con-
sistency collapses to strong consistency for systems with-
out transitions labeled with τ . Consequently the problem
of deciding it is at least NP-hard, by reduction from 3-

Cnf-Sat presented in Section 5.
We conclude this section with a comment on synthesis

of a weak implementation IO from a consistency relation
O. The implementation synthesized by the algorithm presented above will con-
tain internal transitions, if the specification contained them. In fact this is not
always necessary—there definitely exist specifications with internal transitions
that can be realized without hidden behavior. However, hidden transitions are
unavoidable for some specifications. Figure 5 shows such a specification (in fact
even a syntactically consistent one).

7 May-weak Modal Refinement and Its Consistency

In [9] we have proposed another weakening of modal refinement, generalizing
alternating simulation [28] for two players as used in interface automata [29].
We call it may-weak here, as it preserves strong behavior on must transitions,
only allowing weak matching on may transitions. It has been demonstrated that

may-weak modal refinement is a sound basis for assume/guarantee reasoning: it
preserves absence of deadlocks on guaranteed behaviors (details in [9]).

Before we can define the may-weak refinement, let us define the may-weak
transition relation as used in this refinement. We shall write

s a
99K⊳

Ss′ iff s(τ
99K

S)∗s′′ a
99K

Ss′ (13)

Similarly as before we write s â
99K⊳

Ss′ meaning s a
99K⊳

Ss′ if a ∈ act and s(τ
99K

S)∗s′

if a = τ . We use the regular (strong) must-transition relation lifted to sets of
states as in Section 5. We also lift our new may-weak transition relation:

σ â
99K⊳

⌊S⌋σ′ iff ∀s ∈ σ.∃s′ ∈ σ′. s â
99K⊳

Ss′ . (14)

Let us now define may-weak modal refinement [9] using may-weak transitions:

Definition 18 (May-weak Modal Refinement). A binary relation R ⊆
statesS × statesT is a may-weak refinement between states of two modal tran-

sition systems S and T iff for each pair of states (s, t) ∈ R it holds that:

for all a ∈ act and for all t′ ∈ statesT such that t a−→T t′

there exists s′ ∈ statesS such that s a−→Ss′ and (s′, t′) ∈ R,

for all a ∈ act τ and for all s′ ∈ statesS s a
99K

Ss′

there exists t′ ∈ statesT ′ such that t â
99K⊳

T t′ and (s′, t′) ∈ R.

A state s ∈ statesS may-weakly refines a state t ∈ statesT , written s ≤⊳
m t iff

there exists a may-weak modal refinement containing (s, t).

Definition 19 (May-weak Consistency). A state s of a modal transition

system S is may-weak consistent iff there exists an implementation I and its

state sI such that sI ≤⊳
m s.

Definition 20 (May-weak Consistency Relation). Let S be a modal tran-

sition system. A relation U ⊆ P(statesS) is a may-weak consistency relation on

statesS iff for any set of states σ ∈ U , for any state s ∈ σ, and for any action

a ∈ act the following holds:

whenever s a−→Ss′ for some s′ ∈ statesS

then also σ a−→
⌊S⌋σ′ and σ a

99K⊳
⌊S⌋σ′ for some σ′ ∈ U containing s′.

U is a may-weak consistency relation for a state s ∈ statesS iff it contains a

consistency class σs ∈ U such that s ∈ σs.

Given a consistency relation U for a state s of a modal transition system S,
we can synthesize an implementation IU with a state sI refining s. The states of
IU are the consistency classes of U : statesIU = U and sI is the consistency class
containing s. Transition relations of IU equal intersection of must and may-weak
transition relations of S lifted to consistency classes in U (for a 6= τ):

σ a−→IU σ′ and σ a
99K

IU σ′ iff σ a−→
⌊S⌋σ′ and σ a

99K⊳
⌊S⌋σ′ , (15)

Theorem 21 (Soundness). Let s ∈ statesS . If U is a may-weak consistency

relation for s then s is may-weakly consistent and sI ∈ statesIU constructed as

above is one of its implementations: sI ≤⊳
m s.

For the completeness of characterization consider an implementation I, a
state sI ∈ statesI such that sI ≤⊳

m s, where s ∈ statesS . We construct a consis-
tency relation UI for s in the following way:

UI = {σp ⊆ statesS | p ∈ statesI and σp 6= ∅ and ∀q ∈ σp. p ≤⊳
m q} . (16)

Theorem 22 (Completeness). Let S be a modal transition system, s ∈ statesS

and let I be an implementation such that sI ≤⊳
m s for some sI ∈ statesI . Then

there exist a may-weak consistency relation for s, and UI is one such relation.

Existence of a may-weak consistency relation for a given state s can be de-
cided in exponential time, using an algorithm that is easy to extract from Defi-
nition 20. As previously this problem is also NP-hard, as may-weak consistency
collapses to strong consistency for specifications without τ transitions.

A remarkable property of may-weak modal refinement, which we have not
realized when writing [9], is that a may-weak consistent system always has im-
plementations that contain no hidden actions (IU above is actually constructed
without introducing internal transitions). This is because this refinement cap-
tures a kind of (observation) determinism of required behaviors in specifications.
We find this property appealing for applications again: it describes a class of
specifications which allow implementations that are predictable (provided that
they are deterministic). As predictability is an important property of software
systems, the above decision procedure is likely to prove useful in practice.

8 Conclusion and Open Problems

We have addressed several basic questions in the theory of modal transition sys-
tems. We have shown that deciding any refinement that captures, in a precise
way, the same set of concrete implementations as the standard modal refine-
ment (or weak modal refinement) is co-NP hard. This lower bound is not tight.
An upper bound of EXPTIME is easily established by casting the problem as
checking satisfiability of implication between two characteristic formulas, in the
modal µ-calculus. Finding a tight bound remains an open problem that we shall
address shortly. We also hope to study hardness of thorough refinements induced
by may-weak modal refinement and branching modal refinement [10].

Furthermore we have contributed to the understanding of the relation be-
tween refinements and consistencies studying notions of consistency for modal
transition systems induced by four different refinement relations: syntactic con-
sistency [1] (induced by a graph inclusion refinement), strong consistency (in-
duced by a regular modal refinement [1]), weak consistency (induced by weak
modal refinement [19]) and may-weak consistency (induced by may-weak modal
refinement [9]). For each of these we have given a sound and complete opera-
tional characterization. The upper bound on establishing the last three of these

consistencies is exponential, and they are NP-hard. Syntactic consistency can be
established in linear time.

There is a range of open problems related to these results. First, it is an
interesting question whether there exists a useful alternative to modal refinement
that completely characterizes its own (as opposed to the currently accepted)
set of implementations and that can be decided in polynomial time. The main
challenge here is to argue that the set of implementations considered is interesting
from a practical point of view. Alternatively, as suggested to us by Michael Huth,
one can try to characterize broad classes of modal transition systems for which
the currently used refinement is complete.

Finding a uniform formulation for four consistency studies as presented in
this paper was a rather challenging but rewarding task. Given that they can be
described so similarly one could try to take this analogy further and design a
more abstract meta-consistency theory, parameterized only by a refinement.

Furthermore it is interesting to study the relation between consistency and
parallel decomposition. We have done some preliminary work on that topic in [9],
though in a rather restricted setting. We intend to generalize observational con-
sistency of [9], and to understand its semantics building on the results of the
present paper; ultimately employing it in a larger study of decomposition.

References

1. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, IEEE Computer
Society (1988)

2. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation
for three-valued program analysis. Lecture Notes in Computer Science 2028 (2001)

3. Schmidt, D.: From trace sets to modal-transition systems by stepwise abstract
interpretation (2001)

4. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. Lecture Notes in Computer Science 2154 (2001) 426+

5. Børjesson, A., Larsen, K.G., Skou, A.: Generality in design and compositional
verification using tav. In: FORTE ’92 Proceedings, Amsterdam, The Netherlands,
The Netherlands, North-Holland Publishing Co. (1993) 449–464

6. Larsen, K.G., Steffen, B., Weise, C.: A constraint oriented proof methodology
based on modal transition systems. In: Tools and Algorithms for Construction and
Analysis of Systems. (1995) 17–40

7. Bruns, G.: An industrial application of modal process logic. Sci. Comput. Program.
29(1-2) (1997) 3–22

8. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
Fifth Annual IEEE Symposium on Logics in Computer Science (LICS), 4–7 June
1990, Philadelphia, PA, USA. (1990) 108–117

9. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal i/o automata for interface and
product line theories. In Nicola, R.D., ed.: Programming Languages and Systems,
ESOP 2007. Volume 4421 of LNCS., Springer (2007) 64–79

10. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: ROSATEA ’06 Proceedings, New
York, NY, USA, ACM Press (2006) 39–48

11. Uchitel, S., Chechik, M.: Merging partial behavioural models. In Taylor, R.N.,
Dwyer, M.B., eds.: SIGSOFT FSE, ACM (2004) 43–52

12. Brunet, G., Chechik, M., Uchitel, S.: Properties of behavioural model merging. In
Misra, J., Nipkow, T., Sekerinski, E., eds.: FM. Volume 4085 of Lecture Notes in
Computer Science., Springer (2006) 98–114

13. C. Weise, D. Lenzkes: Weak refinement for modal hybrid systems. In O. Maler,
ed.: Hybrid and Real-Time Systems, Grenoble, France, Springer Verlag, LNCS
1201 (1997) 316–330

14. Larsen, K.G.: Modal specifications. In Sifakis, J., ed.: Automatic Verification
Methods for Finite State Systems. Volume 407 of Lecture Notes in Computer
Science., Springer (1989) 232–246

15. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory and
tools. In: CAV ’93: Proceedings of the 5th International Conference on Computer
Aided Verification, London, UK, Springer-Verlag (1993) 253–267

16. Larsen, K.G., Steffen, B., Weise, C.: Fischer’s protocol revisited: a simple proof
using modal constraints. Lecture Notes in Computer Science 1066 (1996) 604–615

17. Fecher, H., Huth, M.: Ranked predicate abstraction for branching time: Complete
incremental, and precise. In: ATVA. Volume 4218 of Lecture Notes in Computer
Science., Springer (2006) 322–336

18. Schmidt, H., Fecher, H.: Comparing disjunctive modal transition systems with a
one-selecting variant. (2007) submitted for publication.

19. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic.
In: LFCS: The 1st International Symposium on Logical Foundations of Computer
Science. (1989)

20. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology (July 1996)

21. Henessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM (1985) 137–161

22. Larsen, K.G.: A context dependent bisimulation between processes. Theoretical
Computer Science 49 (1987)

23. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of 5th
GI Conference. Volume 104. (1981)

24. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science
25 (1983)

25. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model
checking. In Brinksma, E., Larsen, K.G., eds.: CAV. Volume 2404 of Lecture
Notes in Computer Science., Springer (2002) 137–150

26. Hüttel, H.: Operational and denotational properties of modal process logic. Mas-
ter’s thesis, Computer Science Department. Aalborg University (1988)

27. Xinxin, L.: Specification and Decomposition in Concurrency. PhD thesis, Depart-
ment of Mathematics and Comnputer Science, Aalborg University (April 1992)

28. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating refinement rela-
tions. In Sangiorgi, D., de Simone, R., eds.: Proceedings of the Ninth International
Conference on Concurrency Theory (CONCUR’98). Volume 1466. (1998) 163–178

29. Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth An-
nual Symposium on Foundations of Software Engineering (FSE), Vienna, Austria
(September 2001) 109–120

