Skip to main content

An Automatic Design Flow for Implementation of Side Channel Attacks Resistant Crypto-Chips

  • Conference paper
Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (PATMOS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4644))

  • 1462 Accesses

Abstract

Recently, it has been proven that asynchronous circuits possess considerable inherent countermeasure against side channel attacks. In spite of these systems’ advantages for immune cryptography, because of the lack of automatic design tools and standard methods, exploiting such schemes faces difficulties. In this paper, a fully automated secure design flow and a set of secure library cells resistant to power analysis and fault injection attacks are introduced for QDI asynchronous circuits. In this flow a standard cell library has been introduced which has resistance to differential power analysis on faulty hardware attack. The results show that using this scheme is approximately 5.62 times more balanced than the best cells designed using previous synchronous balancing methods. To verify the efficiency of our presented flow we applied it to implementation of the AES cryptography algorithm. Also, this implementation shows a 2.8 times throughput improvement over the synchronous implementation using the same technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  2. adn, J.J.Q., Samyde, D.: Side-channel Cryptanalysis. In: Proc. SECI, September 2002, pp. 179–184 (2002)

    Google Scholar 

  3. Kocher: Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  4. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-measures for Smart Cards. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, Springer, Heidelberg (1999)

    Google Scholar 

  5. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards. In: 28th European Solid-State Circuits Conference (ESSCIRC 2002), September 2002, pp. 403–406 (2002)

    Google Scholar 

  6. Mace, F., Standaert, F.X., Quisquater, J.J., Legat, J.D.: A Design Methodology for Secured ICs Using Dynamic Current Mode Logic. In: Paliouras, V., Vounckx, J., Verkest, D. (eds.) PATMOS 2005. LNCS, vol. 3728, pp. 550–560. Springer, Heidelberg (2005)

    Google Scholar 

  7. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: Tiri, K. (ed.) Design, Automation and Test in Europe Conference (DATE 2004), February 2004, pp. 246–251 (2004)

    Google Scholar 

  8. Kulikowski, K., Smirnov, A., Taubin, A.: Automated Design of Cryptographic Devices Resistant to Multiple Side-Channel Attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Kulikowski, K., Karpovsky, M., Taubin, A.: DPA on faulty cryptographic hardware and countermeasures. In: Fault Diagnosis and Tolerance in Cryptography. 3nd International Workshop (2006)

    Google Scholar 

  10. Kulikowski, K., Karpovsky, M., Taubin, A.: Robust Codes for Fault Attack Resistant Cryptographic Hardware. In: Fault Diagnosis and Tolerance in Cryptography, 2nd International Workshop, Edinburgh (2005)

    Google Scholar 

  11. Bouesse, F., Fesquet, L., Renaudin, M.: QDI circuit to Improve Smartcard Security. In: 2nd Asynchronous Circuit Design Workshop (ACID 2002), Munich, Germany, Januray 2002, pp. 28–29 (2002)

    Google Scholar 

  12. Renaudin, M.: Asynchronous circuits and systems: a promising design alternative. Microelectronic for Telecommunications: managing high complexity and mobility (MIGAS 2000), Guest Editors : Senn, P., Renaudin, M., Boussey, J. Special issue of the Microelectronics-Engineering Journal 54(1-2), 133–149 (2000)

    Google Scholar 

  13. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Google Scholar 

  14. MacDonald, D.J.: A Balanced-Power Domino-Style Standard Cell Library for Fine-Grain Asynchronous Pipelined Design to Resist Differential Power Analysis Attacks. Master of Science Thesis, 2005, Boston University, Boston (2005), available at http://reliable.bu.edu/Projects/MacDonald_thesis.pdf

  15. Jaffe, J., Kocher, P., Jun, B.: Hardware-level mitigation and DPA countermeasures for Cryptographic devices, US Patent 6654884

    Google Scholar 

  16. http://www.asynch.ir/persia

  17. Seifhashemi, A., Pedram, H.: Verilog HDL, Powered by PLI: a Suitable Framework for Describing and Modeling Asynchronous Circuits at All Levels of Abstraction. In: Proc. Of 40th DAC, June 2003, Anneheim, CA, USA (2003)

    Google Scholar 

  18. Sparso, J., Furber, S.: Principles of Asynchronous Circuit Design – A System Perspective. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  19. McCardle, J., Chester, D.: Measuring an asynchronous processor’s power and noise. In: SNUG (2001)

    Google Scholar 

  20. Martin, A.J.: Synthesis of Asynchronous VLSI Circuits, Caltech, CS-TR-93-28 (1991)

    Google Scholar 

  21. TSMC 0.18μm process 1.8-volt Sage-X standard cell library databook (September 2003)

    Google Scholar 

  22. Fips pub 197: Advanced encryption standard, http://csrc.nist.gov

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nadine Azémard Lars Svensson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghavami, B., Pedram, H. (2007). An Automatic Design Flow for Implementation of Side Channel Attacks Resistant Crypto-Chips. In: Azémard, N., Svensson, L. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2007. Lecture Notes in Computer Science, vol 4644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74442-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74442-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74441-2

  • Online ISBN: 978-3-540-74442-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics