Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4638))

  • 787 Accesses

Abstract

Stochastic Local Search (SLS) is quite effective for a variety of Combinatorial (Optimization) Problems. However, the performance of SLS depends on several factors and getting it right is not trivial. In practice, SLS may have to be carefully designed and tuned to give good results. Often this is done in an ad-hoc fashion. One approach to this issue is to use a tuning algorithm for finding good parameter settings to a black-box SLS algorithm. Another approach is white-box which takes advantage of the human in the process. In this paper, we show how visualization using a generic visual tool can be effective for a white-box approach to get the right SLS behavior on the fitness landscape of the problem instances at hand. We illustrate this by means of an extended walk-through on the Quadratic Assignment Problem. At the same time, we present the human-centric tool which has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Charon, I., Hudry, O.: Mixing Different Components of Metaheuristics. In: Meta-Heuristics: Theory and Applications, pp. 589–603. Kluwer, Dordrecht (1996)

    Google Scholar 

  2. Birattari, M.: The Problem of Tuning Metaheuristics as seen from a machine learning perspective. PhD thesis, Université Libre de Bruxelles (2004)

    Google Scholar 

  3. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  4. Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms Using Fractional Experimental Designs and Local Search. Operations Research 54(1), 99–114 (2006)

    Article  Google Scholar 

  5. Halim, S., Lau, H.: Tuning Tabu Search Strategies via Visual Diagnosis. In: Meta-Heuristics: Progress as Complex Systems Optimization, Kluwer, Dordrecht (2007)

    Google Scholar 

  6. Monett-Diaz, D.: +CARPS: Configuration of Metaheuristics Based on Cooperative Agents. In: International Workshop on Hybrid Metaheuristics, pp. 115–125 (2004)

    Google Scholar 

  7. Hutter, H., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametic Algorithms. In: International Conference on Principles and Practice of Constraint Programming, pp. 213–228 (2006)

    Google Scholar 

  8. Merz, P.: Memetic Algorithms for Combinatorial Optimization: Fitness Landscapes & Effective Search Strategies. PhD thesis, University of Siegen, Germany (2000)

    Google Scholar 

  9. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The New Experimentalism. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.: Human-Guided Tabu Search. In: National Conference on Artificial Intelligence (AAAI), pp. 41–47 (2002)

    Google Scholar 

  11. Syrjakow, M., Szczerbicka, H.: Java-based Animation of Probabilistic Search Algorithms. In: International Conference on Web-based Modeling and Simulation, pp. 182–187 (1999)

    Google Scholar 

  12. Kadluczka, M., Nelson, P., Tirpak, T.: N-to-2-Space Mapping for Visualization of Search Algorithm Performance. In: International Conference on Tools with Artificial Intelligence, pp. 508–513 (2004)

    Google Scholar 

  13. Lau, H., Wan, W., Halim, S.: Tuning Tabu Search Strategies via Visual Diagnosis. In: Metaheuristics International Conference, pp. 630–636 (2005)

    Google Scholar 

  14. Halim, S., Yap, R., Lau, H.: Visualization for Analyzing Trajectory-Based Metaheuristic Search Algorithms. In: European Conference on Artificial Intelligence, pp. 703–704 (2006)

    Google Scholar 

  15. Halim, S., Yap, R., Lau, H.: Viz: A Visual Analysis Suite for Explaining Local Search Behavior. In: User Interface Software and Technology, pp. 57–66 (2006)

    Google Scholar 

  16. Schneider, J., Kirkpatrick, S.: Stochastic Optimization. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  17. Taillard, E.: Robust Tabu Search for the Quadratic Assignment Problem. Parallel Computing 17, 443–455 (1991)

    Article  Google Scholar 

  18. Schiavinotto, T., Stützle, T.: A Review of Metrics on Permutations for Search Landscape Analysis. Computers and Operation Research 34(10), 3143–3153 (2007)

    Article  MATH  Google Scholar 

  19. Graphviz: Graph Visualization Software, http://www.graphviz.org

  20. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  21. QAPLIB: Quadratic assignment problem library, http://www.seas.upenn.edu/qaplib

  22. Taillard, E.: Comparison of Iterative Searches for the Quadratic Assignment Problem. Location Science 3, 87–105 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Stützle Mauro Birattari Holger H. Hoos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halim, S., Yap, R.H.C. (2007). Designing and Tuning SLS Through Animation and Graphics: An Extended Walk-Through. In: Stützle, T., Birattari, M., H. Hoos, H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2007. Lecture Notes in Computer Science, vol 4638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74446-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74446-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74445-0

  • Online ISBN: 978-3-540-74446-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics