Abstract
We consider a possible scenario of experimental analysis on heuristics for optimization: identifying the contribution of local search components when algorithms are evaluated on the basis of solution quality attained.
We discuss the experimental designs with special focus on the role of the test instances in the statistical analysis. Contrary to previous practice of modeling instances as a blocking factor, we treat them as a random factor. Together with algorithms, or their components, which are fixed factors, this leads naturally to a mixed ANOVA model. We motivate our choice and illustrate the application of the mixed model on a study of local search for the 2-edge-connectivity problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2004)
Barr, R., Golden, B., Kelly, J., Resende, M., Stewart, W.: Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics 1(1), 9–32 (1995)
McGeoch, C.C.: Toward an experimental method for algorithm simulation. INFORMS Journal on Computing 8(1), 1–15 (1996)
Rardin, R.L., Uzsoy, R.: Experimental evaluation of heuristic optimization algorithms: A tutorial. Journal of Heuristics 7(3), 261–304 (2001)
Coffin, M., Saltzman, M.J.: Statistical analysis of computational tests of algorithms and heuristics. INFORMS Journal on Computing 12(1), 24–44 (2000)
Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1, 32–42 (1996)
Molenberghs, G., Verbeke, G. (eds.): Linear Mixed Models in Practice - A SAS-Oriented Approach. Springer, Heidelberg (1997)
Montgomery, D.C.: Design and Analysis of Experiments, 6th edn. John Wiley & Sons, Chichester (2005)
Zemel, E.: Measuring the quality of approximate solutions to zero-one programming problems. Mathematics of operations research 6(3), 319–332 (1981)
Birattari, M.: On the estimation of the expected performance of a metaheuristic on a class of instances. how many instances, how many runs? Tech. Rep. TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2004)
Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer, Heidelberg (2005)
Bang-Jensen, J., Chiarandini, M., Morling, P.: A computational investigation on heuristics for 2-edge connectivity augmentation. Submitted to journal (2007)
Diestel, R.: Graph Theory, 2nd edn. electronic edn. Springer-Verlag, New York, Berlin (2000)
Conforti, M., Galluccio, A., Proietti, G.: Edge-connectivity augmentation and network matrices. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 355–364. Springer, Heidelberg (2004)
Raidl, G.R., Ljubic, I.: Evolutionary local search for the edge-biconnectivity augmentation problem. Information Processing Letters 82(1), 39–45 (2002)
Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bang-Jensen, J., Chiarandini, M., Goegebeur, Y., Jørgensen, B. (2007). Mixed Models for the Analysis of Local Search Components. In: Stützle, T., Birattari, M., H. Hoos, H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2007. Lecture Notes in Computer Science, vol 4638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74446-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-74446-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74445-0
Online ISBN: 978-3-540-74446-7
eBook Packages: Computer ScienceComputer Science (R0)