Abstract
We propose two new data stream models: the reset model and the delta model, motivated by applications to databases, and to tracking the location of spatial points.
We present algorithms for several problems that fit within the stream constraint of polylogarithmic space and time. These include tracking the “extent” of the points and L p sampling.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
DIMACS Workshop on Managing and Processing Data Streams, FCRC (2003), http://www.research.att.com/conf/mpds2003/
http://www.lbszone.com/ , http://gislounge.com/ll/lbs.shtml , http://www.lbsportal.com/
http://dimacs.rutgers.edu/Workshops/WGDeliberate/FinalReport5-20-02.doc
DIMACS Working Group on Streaming Data Analysis, http://dimacs.rutgers.edu/Workshops/StreamingII/
Abounaga, A., Chaudhuri, S.: Self-tuning histograms: Building histograms without looking at the data. In: Proc. SIGMOD (1999)
Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: Proc. ACM STOC, pp. 20–29 (1996)
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. ACM PODS, pp. 1–16 (2002)
Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting distinct elements in a data stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)
Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering problems. ACM STOC (2003)
Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing data streams using Hamming norms (How to zero in). IEEE Trans. Knowledge and Data Engineering 15, 529–541 (2003)
Cormode, G., Muthukrishnan, S.: Radial Histograms. DIMACS TR 2003-11.
Cormode, G., Muthukrishnan, S.: Estimating dominance norms of multiple data streams. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 148–160. Springer, Heidelberg (2003)
Datar, M., Muthukrishnan, S.: Estimating Rarity and Similarity over Data Stream Windows. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 323–334. Springer, Heidelberg (2002)
Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource consumption in network traffic. SIGCOMM (2003)
Feigenbaum, J., Kannan, S., Ziang, J.: Computing diameter in the streaming and sliding window models. Manuscript (2002)
Flajolet, P., Martin, G.: Probabilistic counting algorithms for database applications. JCSS 31, 182–209 (1985)
Gibbons, P., Matias, Y.: Synopsis data structures. In: Proc. SODA, pp. 909–910 (1999)
Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on streams: One pass summaries for approximate aggregate queris. VLDB Journal, 79–88 (2001)
Gilbert, A.C., Guha, S., Indyk, P., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Fast, small-space algorithms for approximate histogram maintenance. In: Proceedings 34th ACM STOC, pp. 389–398 (2002)
Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: Proc. ACM SIGMOD (2001)
Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. IEEE FOCS, pp. 359–366 (2000)
Har-Peled, S., Mazumdar, S.: On Coresets for k-Means and k-Median Clustering. In: Proc. 36th ACM STOC, pp. 291–300 (2004)
Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data stream. Technical Note 1998-011. Digital systems research center, Palo Alto (May 1998)
Hershberger, J., Suri, S.: Convex hulls and related problems on data streams. In: Proc. MPDS (2003)
Indyk, P.: Algorithms for dynamic geometric problems over data streams. In: Proc. Annual ACM Symposium on Theory of Computing (STOC), pp. 373–380 (2004)
Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. IEEE FOCS, pp. 189–197 (2000)
Indyk, P., Thorup, M.: Unpublished manuscript (2001)
Jana, R., Johnson, T., Muthukrishnan, S., Vitaletti, A.: Location based services in a wireless WAN using cellular digital packet data (CDPD). MobiDE 2001: 74–80
Korn, F., Muthukrishnan, S., Srivastava, D.: Reverse nearest neighbor aggregates over data streams. In: Proc. VLDB (2002)
Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection: methods, evaluation and applications. In: Proc. Internet Measurement Conference (IMC) (2003)
Manku, G., Motwani, R.: Approximate frequency counts over data streams. In: Proc. VLDB, pp. 346–357 (2002)
Madden, S., Franklin, M.: Fjording the stream: An architecture for queryies over streaming sensor data. In: Proc. ICDE (2002)
Muthukrishnan, S.: Data Streams: Algorithms and Applications. The Foundations and Trends in Theoretical Computer Science series, Now Publishers (2005)
Bates, J.: Talk at NAS meeting on Statistics and Massive Data, http://www7.nationalacademies.org/bms/Massive_Data_Workshop.html
Querying and mining data streams: you only get one look. Tutorial at SIGMOD, VLDB 2002 etc. (2002), See http://www.bell-labs.com/user/minos/tutorial.html
Varghese, G.: Detecting packet patterns at high speeds. Tutorial at SIGCOMM (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoffmann, M., Muthukrishnan, S., Raman, R. (2007). Streaming Algorithms for Data in Motion. In: Chen, B., Paterson, M., Zhang, G. (eds) Combinatorics, Algorithms, Probabilistic and Experimental Methodologies. ESCAPE 2007. Lecture Notes in Computer Science, vol 4614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74450-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-74450-4_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74449-8
Online ISBN: 978-3-540-74450-4
eBook Packages: Computer ScienceComputer Science (R0)