Abstract
Graph partitioning algorithms have yet to be improved, because graph-based local optimization algorithms do not compute smooth and globally-optimal frontiers, while global optimization algorithms are too expensive to be of practical use on large graphs. This paper presents a way to integrate a global optimization, diffusion algorithm in a banded multi-level framework, which dramatically reduces problem size while yielding balanced partitions with smooth boundaries. Since all of these algorithms do parallelize well, high-quality parallel graph partitioners built using these algorithms will have the same quality as state-of-the-art sequential partitioners.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings of Supercomputing (1995)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. on Scientific Computing 20(1), 359–392 (1998)
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitionning graphs. BELL System Technical Journal 49, 291–307 (1970)
Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proc. 19th Design Automat. Conf. pp. 175–181. IEEE Computer Society Press, Los Alamitos (1982)
Vanderstraeten, R., Keunings, R., Farhat, C.: Beyond conventional mesh partitioning algorithms. In: SIAM Conf. on Par. Proc. pp. 611–614 (1995)
Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Aspect ratio for mesh partitioning. In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 347–351. Springer, Heidelberg (1998)
Meyerhenke, H., Schamberger, S.: Balancing parallel adaptive FEM computations by solving systems of linear equations. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 209–219. Springer, Heidelberg (2005)
Meyerhenke, H., Schamberger, S.: A parallel shape optimizing load balancer. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 232–242. Springer, Heidelberg (2006)
Wan, Y., Roy, S., Saberi, A., Lesieutre, B.: A stochastic automaton-based algorithm for flexible and distributed network partitioning. In: Proc. Swarm Intelligence Symposium, pp. 273–280. IEEE, Los Alamitos (2005)
Chevalier, C., Pellegrini, F.: Improvement of the efficiency of genetic algorithms for scalable parallel graph partitioning in a multi-level framework. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 243–252. Springer, Heidelberg (2006)
Chevalier, C., Pellegrini, F.: PT- SCOTCH: A tool for efficient parallel graph ordering. Parallel Computing (submitted), http://www.labri.fr/~pelegrin/papers/scotch_parallelordering_parcomp.pdf
SCOTCH: Static mapping, graph partitioning, and sparse matrix block ordering package, http://www.labri.fr/~pelegrin/scotch/
Simon, H.D., Teng, S.H.: How good is recursive bipartition. SIAM J. Scientific Computing 18(5), 1436–1445 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pellegrini, F. (2007). A Parallelisable Multi-level Banded Diffusion Scheme for Computing Balanced Partitions with Smooth Boundaries. In: Kermarrec, AM., Bougé, L., Priol, T. (eds) Euro-Par 2007 Parallel Processing. Euro-Par 2007. Lecture Notes in Computer Science, vol 4641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74466-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-74466-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74465-8
Online ISBN: 978-3-540-74466-5
eBook Packages: Computer ScienceComputer Science (R0)