Abstract
The Rate-Based Progressive Join (RPJ) is a non-blocking relational equijoin algorithm. It is an equijoin that can deliver results progressively. In this paper, we first present a naive extension, called neRPJ, to the progressive computation of the similarity join of high-dimensional data. We argue that this naive extension is not suitable. We therefore propose an adequate solution in the form of a Result-Rate Progressive Join (RRPJ) for high-dimensional distance similarity joins. Using both synthetic and real-life datasets, we empirically show that RRPJ is effective and efficient, and outperforms the naive extension.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tao, Y., Yiu, M.L., Papadias, D., Hadjieleftheriou, M., Mamoulis, N.: RPJ: Producing fast join results on streams through rate-based optimization. In: SIGMOD, pp. 371–382 (2005)
Tok, W.H., Bressan, S., Lee, M.-L.: RRPJ: Result-rate based progressive relational join. In: DASFAA, pp. 43–54 (2007)
Tok, W.H., Bressan, S., Lee, M.-L.: Progressive spatial joins. In: SSDBM, pp. 353–358 (2006)
Shim, K., Srikant, R., Agrawal, R.: High-dimensional similarity joins. In: ICDE, pp. 301–311 (1997)
Koudas, N., Sevcik, K.C.: High dimensional similarity joins: Algorithms and performance evaluation. IEEE Transactions on Knowledge and Data Engineering 12(1), 3–18 (2000)
Böhm, C., Braunmüller, B., Breunig, M.M., Kriegel, H.-P.: High performance clustering based on the similarity join. In: CIKM, pp. 298–305 (2000)
Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon grid order: An algorithm for the similarity join on massive high-dimensional data. In: SIGMOD, pp. 379–388 (2001)
Kalashnikov, D.V., Prabhakar, S.: Fast similarity join for multi-dimensional data. Inf. Syst. 32(1), 160–177 (2007)
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)
Berchtold, S., Keim, D.A., Kriegel, H.-P.: The x-tree: An index structure for high-dimensional data. In: VLDB, pp. 28–39 (1996)
Koudas, N., Sevcik, K.C.: High dimensional similarity joins: Algorithms and performance evaluation. In: ICDE, pp. 466–475 (1998)
Urhan, T., Franklin, M.J.: XJoin: Getting fast answers from slow and bursty networks. Technical Report CS-TR-3994, University of Maryland (1999)
Dittrich, J.-P., Seeger, B., Taylor, D.S., Widmayer, P.: Progressive merge join: A generic and non-blocking sort-based join algorithm. In: VLDB, pp. 299–310 (2002)
Mokbel, M.F., Lu, M., Aref, W.G.: Hash-merge join: A non-blocking join algorithm for producing fast and early join results. In: ICDE, pp. 251–263 (2004)
Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-memory environment. In: PDIS, pp. 68–77 (1991)
Corel image features dataset (1999), http://kdd.ics.uci.edu/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tok, W.H., Bressan, S., Lee, ML. (2007). Progressive High-Dimensional Similarity Join. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-74469-6_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74467-2
Online ISBN: 978-3-540-74469-6
eBook Packages: Computer ScienceComputer Science (R0)