Abstract
The growing need for ’intelligent’ video retrieval systems leads to new architectures combining multiple characterizations of the video content that rely on expressive frameworks while providing fully-automated indexing and retrieval processes. As a matter of fact, addressing the problem of combining modalities for video indexing and retrieval is of huge importance and the only solution for achieving significant retrieval performance. This paper presents a multi-facetted conceptual framework integrating multiple characterizations of the visual and audio contents for automatic video retrieval. It relies on an expressive representation formalism handling high-level video descriptions and a full-text query framework in an attempt to operate video indexing and retrieval beyond trivial low-level processes, keyword-annotation frameworks and state-of-the art architectures loosely-coupling visual and audio descriptions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amato, G., Mainetto, G., Savino, P.: An Approach to a Content-Based Retrieval of Multimedia Data. Multimedia Tools and Applications 7, 9–36 (1998)
Belkhatir, M., Mulhem, P., Chiaramella, Y.: Integrating Perceptual Signal Features within a Multi-facetted Conceptual Model for Automatic Image Retrieval. In: McDonald, S., Tait, J. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 267–282. Springer, Heidelberg (2004)
Belkhatir, M.: Combining semantics and texture characterizations for precision-oriented automatic image retrieval. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 457–474. Springer, Heidelberg (2005)
Berlin, B., Kay, P.: Basic Color Terms: Their universality and Evolution. UC Press (1991)
Bhushan, N., et al.: The Texture Lexicon: Understanding the Categorization of Visual Texture Terms and Their Relationship to Texture Images. Cognitive Science 21(2), 219–246 (1997)
Cohn, A., et al.: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. Geoinformatica 1, 1–44 (1997)
Fablet, R., Bouthémy, P.: Statistical motion-based video indexing and retrieval. In: Conf. on Content-Based Multimedia Information Access, pp. 602–619 (2000)
Fan, J., et al.: ClassView: hierarchical video shot classification, indexing, and accessing. IEEE Transactions on Multimedia 6(1), 70–86 (2004)
Gauvain, J.L., Lamel, L., Adda, G.: The LIMSI Broadcast News transcription system. Speech Communication 37, 89–108 (2002)
Gong, Y., Chuan, H., Xiaoyi, G.: Image Indexing and Retrieval Based on Color Histograms. Multimedia Tools and Applications II, 133–156 (1996)
Kokkoras, F.A., et al.: Smart VideoText: a video data model based on conceptual graphs. Multimedia Syst. 8(4), 328–338 (2002)
Kwon, S., Narayanan, S.: Speaker Change Detection Using a New Weighted Distance Measure. In: ICSLP, pp. 16–20 (2002)
Lim, J.H.: Explicit query formulation with visual keywords. ACM Multimedia, 407–412 (2000)
Lin, C.Y., Tseng, B.L., Smith, J.R.: VideoAnnEx: IBM MPEG-7 Annotation Tool for Multimedia Indexing and Concept Learning. In: IEEE ICME (2003)
Nie, J.Y.: An outline of a General Model for Information Retrieval Systems. In: ACM SIGIR, pp. 495–506 (1988)
Smeulders, A.W.M., et al.: Content-based image retrieval at the end of the early years. IEEE PAMI 22(12), 1349–1380 (2000)
Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-Wesley publishing company, London (1984)
Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
Zhu, X., et al.: InsightVideo: toward hierarchical video content organization for efficient browsing, summarization and retrieval. IEEE Trans. on Multimedia 7(4), 648–666 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belkhatir, M., Charhad, M. (2007). A Conceptual Framework for Automatic Text-Based Indexing and Retrieval in Digital Video Collections. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-74469-6_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74467-2
Online ISBN: 978-3-540-74469-6
eBook Packages: Computer ScienceComputer Science (R0)