
Benchmarking RDF Production Tools

Martin Svihla and Ivan Jelinek

Czech Technical University in Prague,
Karlovo namesti 13, Praha 2, Czech republic,

{svihlm1, jelinek}@fel.cvut.cz,
WWW home page: http://webing.felk.cvut.cz

Abstract. Since a big part of web content is stored in relational databases
(RDB) there are several approaches for generating of semantic web meta-
data from RDB. In our previous work we designed a novel approach for
RDB to RDF data transformation. This paper describes experimental
comparison of our system with several means of RDF production. We
benchmarked both systems for the RDB to RDF transformation and
native RDF repositories. The test results show a good performance of
our system but also bring a new look at the effectiveness of the RDF
production.

1 Introduction

It is widely accepted fact that the growth of the semantic web is dependent
on the mass creation of metadata that will cover current web resources. Since
the most of web content is backed by relational databases our previous work is
focused on the transformation of relational data into RDF metadata, which is
based on mapping between a relational database schema and existing RDF-S
ontology. We have recently proposed METAmorphoses [1] – a new data trans-
formation model based on two layers. This model is designed with regard to
its performance, robustness and usability. Our work stands on the theoretical
foundations of the semantic web technologies, but we also took into the account
practical issues while developing the formal model. In this paper we briefly in-
troduce our approach and compare our system with several other approaches for
the RDB to RDF transformation as well as with some native RDF repositories
built over relational databases. Our approach appears to be the fastest solution
for RDF production between selected systems but results shows much more gen-
eral conclusions – it appears that a well designed RDF production directly from
RDB can be faster than querying the native RDF repositories.

2 METAmorphoses

The METAmorphoses processor1 is a data transformation tool developed in our
previous work [1]. It transforms relational data to RDF according to mapping
1 Available at http://metamorphoses.sourceforge.net/



from a relational schema into an existing ontology. The transformation process
has two steps: (i) mapping from a particular RDB schema into an existing RDF-
S ontology and (ii) creating RDF documents from relational data based on the
mapping from the first step. Thus the model has two layers (figure 1). The
mapping between a database schema and ontology consists of mapping elements
and is processed in the mapping layer. A mapping element addresses relational
concepts by SQL queries. The mapping is used in the template layer, which
processes templates – XML-based documents for querying RDB. Since templates
have a form of RDF and uses SQL from mapping elements to fetch data from
RDB, they can be considered as a RDF view to RDB. METAmorphoses supports
all RDF and RDF-S features and is relational complete. We designed the system
so that it uses no RDF API, which is not neccessary for a data transformation
and can slow a performance of the system. This fact together with the template
user interface instead of RDF query language is a novel contribution to the RDB
to RDF data transformation. The system is implemented in Java language.

The scope of this paper does not allow us to describe the system in detail.
The complete description is available in [1].

Fig. 1. Two-layer data transformation in METAmorphoses

Mapping Element
- relational concept
- ontology concept
- id

z

Person

+Name

+Age

Ontology

<person>

 <hasName/>

 <hasProject/>

</person>

RBDMS 

 RDF 

 

Template document

Template 
layer

Mapping 
layer

3 Experiment Overview

3.1 Compared Systems

We compared 5 different systems in our experiments – 3 tools for the RDB to
RDF transformation (METAmorphoses, D2RQ and SquirrelRDF) and 2 native
RDF repositories with RDB back-end (Jena and Sesame1). Moreover, we per-
formed 2 different tasks with D2RQ and Jena in the most of tests – we queried
dataset with both SPARQL and graph API.



METAmorphoses v0.2.5 is briefly described above. To perform tests we
created a schema mapping between the relational schema of the experimental
dataset and RDF-S ontology and then queried the dataset using our template
documents as queries.

D2RQ v0.5 [2] is a plug-in for the Jena [4], which uses mappings to rewrite
Jena API calls to SQL queries and passes query results as RDF triples up to the
higher layers of the Jena framework. Using D2RQ mapping it is possible to access
relational database as a virtual RDF graph via classical Jena API. This way the
relational database can be queried by SPARQL [8] or find(s p o) functions and
a result is an RDF. When testing D2RQ, we performed two separate experiments:
one with find(s p o) functions and another with SPARQL. We run D2RQ in
Jena v2.5.1 in these tests.

SquirrelRDF [3] is a tool which allows relational databases to be queried using
SPARQL. It provides a tool that creates just a rough mapping for a database
schema (its the näıve RDB to RDF mapping, described in [9], which does not
consider an ontology) and a set of different SPARQL interfaces. Result of the
SPARQL query over RDB is RDF. SquirrelRDF requires Jena v2.4 and we used
its API to perform SPARQL queries in our experiments.

Jena v2.5.1 (persistent DB model) [4] is a Java framework for building
semantic web applications. It provides a programmatic environment for RDF,
RDF-S, SPARQL and includes a rule-based inference engine. Jena can also store
RDF data persistently in relational databases. We stored testing dataset in the
persistent storage (backed by MySQL RDBMS) and then performed exactly the
same experiments as in the case of D2RQ.

Sesame v1.2.6 (persistent DB model) [6] is an open source Java framework
for storing, querying and reasoning with RDF and RDF-S. It can be used as a
database for RDF and RDF-S, or as a Java library for applications that need to
work with RDF internally. Sesame provides also relational storage for RDF data
(so called RDBMS-Sail). We uploaded our testing RDF dataset to the Sesame
persistent datastore (backed by MySQL RDBMS) and queried it with SeRQL
(the internal query language of Sesame) in our experiments.

3.2 Experiment Methodology

To compare the tools listed above we used micro-benchmarks. The measured as-
pect was a time of an RDF production on a given query. Each test task consisted
of (i) preliminary phase, where the source data, query engine and query were
prepared and (ii) measured phase, where the query was executed and resulting
RDF was written to standard output in the RDF/XML syntax. We decided to



measure also RDF output because the tested aspect is the RDF production. Ac-
cording to granularity of the benchmarking tool (10ms) and the very short time
of a query execution, we executed each query 100 times in a measured phase of
each task. A warm-up was executed before each measured task in order to avoid
JVM performance unbalance. A test consisted of the 5 same tasks executed in
a row and its result was an arithmetic mean computed of the 5 task times.

3.3 Testing Dataset

The dataset used for the benchmarks is an XML dump of the DBLP computer
science bibliography [7]. XML was converted into an SQL database dump and
into an RDF representation2. The relational version of the dataset consists of 6
tables (InProceeding, Person, Proceeding, Publisher, RelationPersonInProceeding,
Series) without indexes and contains 881,876 records. These relational data
were stored in a MySQL database and used while testing METAmorphoses,
D2RQ and SquirrelRDF. The RDF representation of DBLP contains 1,608,344
statements and it was loaded into relational backends of Jena2 and Sesame1 to
test them. To obtain more granular data, we created the tables Proceeding500
and Proceeding1500, which contains the first 500 and 1500 records respectively
from the table Proceeding. These data were also added to the RDF version of
the dataset.

3.4 Testing Environment

The tests ran on Intel Pentium M processor 1400MHz with 1536 MB of RAM.
The operating system was Linux (i386) with kernel version 2.6.12. Java Virtual
Machine was the one implementated by Sun Microsystems Inc., version 1.5.0 01-
b08. The RDBMS for storing data was MySQL server 5.0.30-Debian 1. All tests
were performed within a simple Java benchmarking framework called JBench3,
which provides an easy way to compare Java algorithms for speed. The CPU
timer based on the native JVM profiling API was used to obtain more accurate
times. This timer reports the actual CPU time spent executing code in the test
case thread rather than the wall-clock time that is affected by CPU load. The
granularity of the timer was 10ms.

4 Experiments and Results

Testing queries are described in SPARQL formal terminology even their form
vary between systems. In case of SPARQL and SeRQL queries we used CON-
STRUCT form so that the result was a graph - as well as in the case of META-
morphoses templates or Jena Graph API. To compare various aspects of the
RDF production, we divided our tests into three groups. In these groups we
tested RDF production according to a (i) result size, (ii) query graph pattern
complexity and (iii) query condition complexity.
2 Thanks to Richard Cyganiak (FU Berlin) for providing us the converted datasets.
3 Available at http://www.yoda.arachsys.com/java/jbench/



4.1 Experiments with the Result Size

In this test set we performed very simple query, based on the following general
graph pattern:

(?s < rdf : type > < particular RDF − S class URI >)

We applied this query on RDF-S classes with different amount of RDF in-
dividuals and we compared the behaviour of the tools according to the size of
resulting RDF graph. We performed 5 tests in this group - we stepwise selected
all resources with type Series, Publisher, Proceeding500, Proceeding1500
and Proceeding. The specific SPARQL queries for these tests with number of
triples in the resulting graphs are in the table 1, results are listed in the table 2.

Table 1. Tests with the result size: queries

Test Query Result
no. triples

1.1 CONSTRUCT * WHERE {?r rdf:type d:Series.} 24

1.2 CONSTRUCT * WHERE {?r rdf:type d:Publisher.} 64

1.3 CONSTRUCT * WHERE {?r rdf:type d:Proceeding500.} 500

1.4 CONSTRUCT * WHERE {?r rdf:type d:Proceeding1500.} 1500

1.5 CONSTRUCT * WHERE {?r rdf:type d:Proceeding.} 3007

Table 2. Tests with the result size: results (times in ms)

Test no. (number of result triples)
System 1.1 (20) 1.2 (64) 1.3 (500) 1.4 (1500) 1.5 (3007)

METAmorphoses 84 230 1840 5692 13124

SquirrelRDF 830 1314 5180 16228 42504

D2RQ SPARQL 522 1332 7730 25530 45704

Jena SPARQL 482 1444 8296 27478 49968

D2RQL Graph API 366 1134 6434 20922 38253

Jena Graph API 368 1028 6902 22874 42588

Sesame1 SeRQL 194 423 2144 6624 12826

4.2 Experiments with the Graph Pattern Complexity

Test queries from this group consist of one graph pattern matching condition,
which identifies exactly one RDF resource:



(?s < my ontology : hasT itle > ”TITLE”̂ ˆxsd : string)

These queries differ in amount of resources and literals linked by graph pat-
terns in the query. The size of resulting RDF graph does not differ too much in
these queries so that we can compare tools according to complexity of the query
graph pattern. The graph patterns are depicted on the figure 2, test results are
listed in the table 3.

Fig. 2. Tests with the graph pattern complexity: graph patterns

?inProc

"TITLE"

?pages
?inProc

"TITLE"

?pages

?proc ?title

?year

?inProc

"TITLE"

?pages

?proc ?title

?year

Test 2.1 Test 2.2

Test 2.3

?author ?name

?inProc

"TITLE"

?pages

?proc ?title

?year

Test 2.4

?author ?name

?publisher ?title

4.3 Experiments with the Query Condition Complexity

The tests in the third test set have a very simple graph pattern and they reffer
to individuals from only one RDF-S class. These tests differ in number and
type of conditions in the query. We performed these tests only with 5 systems
– we ommited Jena and D2RQ graph API because this API does not allow
straightforward queries with more conditions.

In SPARQL, there are two ways how to restrict possible solutions of a query:
graph pattern matching and constraining values. This test set contains 4 tests
that combines these conditions in various ways. The size of a resulting RDF is
very small so that tests are focused on the query algorithm performance.



Table 3. Tests with the graph pattern complexity: results (times in ms)

Test no. (number of result triples)
System 2.1 (2) 2.2 (4) 2.3 (6) 2.4 (8)

METAmorphoses 28 76 110 124

SquirrelRDF 640 678 768 808

D2RQ SPARQL 252 426 674 850

Jena SPARQL 212 360 456 552

D2RQL Graph API 106 224 434 506

Jena Graph API 94 150 204 262

Sesame1 SeRQL 100 198 272 324

The test queries are depicted on the figure 3. The first query (test 3.1) con-
tains a single graph pattern matching condition (similar to queries from the
second test set) and the resulting graph contains 8 triples. The second query
(test 3.2) adds one graph pattern matching condition to the first query and
fetches 2 triples from the dataset. The query in the test 3.3 uses a condition
with constraining value to obtain the same result as the test 3.2. The last query
(test 3.4) combines conditions from test 3.1 and 3.3. The test times are in the
table 4.

Fig. 3. Tests with the query condition complexity: graph patterns

?proc ?title

?year

"22"

hasSeriesId

Test 3.1

?proc ?title

?year

"22"

hasSeriesId

Test 3.2

?proc ?title

?year

"22"

hasSeriesId

Test 3.4

?proc ?title

?year

?isbn

hasIsbn

Test 3.3

"22"

hasEditorId

FILTER ?isbn = "981-02-1055-8"

?isbn FILTER ?isbn = "981-02-1055-8"

hasIsbn



Table 4. Tests with the query condition complexity: results (times in ms)

Test no. (number of result triples)
System 3.1 (8) 3.2 (2) 3.3 (2) 3.4 (2)

METAmorphoses 78 36 30 32

SquirrelRDF 636 582 9670 598

D2RQ SPARQL 618 336 17480 360

Jena SPARQL 544 240 30794 232

Sesame1 SeRQL 238 124 110 126

5 Discussion on Results

The test results show that our approach (METAmorphoses) was the fastest one
almost in all tests (except test 1.5, where Sesame1 had slightly better perfor-
mace).

In the first test set all systems have approximatelly linear computation per-
formace. This relation between the result size and performance is illustrated in
the table 5, which contains average times for producing 1 triple (100 times).
It is obvious that these times are almost the same for each system, but vary
between systems. Interesting is also the test 1.1, where the time-for-one-triple
index is slightly higher for the most systems. We reason that this is caused by
a starting phase of the query execution, which does not depend on the result
size and is obvious at the query with a small resulting RDF (24 triples). The
relatively shortest starting phase appears with METAmorphoses, the longest is
with SquirrelRDF (more than 2 times higher than in other tests). Considering
this starting phase there is no point to compute the time-for-one-triple index in
the second and third test set – a resulting RDF is very small in these tests (2-8
triples).

The METAmorphoses was the fastest system also in the second test set. It
keeps its high performance and small growth of the test time with the growing
graph pattern complexity. The METAmorphoses has the best performance also
in all tests in the third test set 4. Sesame1 is a little bit slower but similarity of its
results with those of METAmorphoses is interesting. On the other hand, other
three systems are much more slower. It is obvious in the test 3.3, where result
times are very high. This is probably caused with non-optimized constraint value
handling in the Jena SPARQL query engine, which is used by all these systems.

An interesting observation is that all systems based on Jena (SquirrelRDF,
D2RQ and Jena itself) have very similar results, especially in the first and third
test set. We explain this by the same algorithms for a resulting RDF graph
composition (in the first test set) and SPARQL query execution (in the third
test set). This means all solutions build above Jena shares all its advantages and
disadvantages and are limited by its performance. Sesame1 and METAmorphoses



Table 5. Time (in ms) for producing one triple (100 times) - based on the first test
set

Test no. (number of result triples)
System 1.1 (20) 1.2 (64) 1.3 (500) 1.4 (1500) 1.5 (3007)

METAmorphoses 3,5 2,67 3,68 3,79 4,36

SquirrelRDF 34,58 15,28 10,36 10,82 14,14

D2RQ SPARQL 21,75 15,49 15,46 17,02 15,2

Jena SPARQL 20,08 16,79 16,59 18,32 16,62

D2RQL Graph API 15,25 13,19 12,87 13,95 12,72

Jena Graph API 15,33 11,95 13,8 15,25 14,16

Sesame1 SeRQL 8,08 4,92 4,29 4,42 4,27

had considerably different (and usually much better) test performance. Sesame1
is obviously optimized for querying big amounts of data and METAmorphoses
was designed to be a high performance data transformation tool. According to
the test results, we can say that our concepts implemented in METAmorphoses
shows higher performance compared to other tested data transformation systems
(D2RQ and SquirrelRDF). Our assumption that using RDF API is performance
limitation was correct – our system is faster than those with RDF API.

METAmorphoses is also faster than tested native RDF persistent storages
(persistent DB model in Jena and Sesame1). This is very interesting point. We
proved that if one needs just to publish relational data in RDF, there is no need
to migrate RDB to RDF repository and query this repository. On-the-fly data
transformation (using METAmorphoses) can be done faster than queries over
native RDF repository.

We did not measured RAM footprint of tested systems. However, META-
morphoses does not build RDF graph in a memory (it is a stream data transfor-
mation processor) thus its memory consumption does not depend on a size of a
resulting RDF. All other tested systems first create resulting graph in memory
and then serialize it, which means that their RAM footprint depends on a size
of resulting RDF graph.

6 Related Work

There are not many similar comparison experiments for RDF production tools
because the lack of a common query language and access method make bench-
marking RDF stores a time consuming task (as mentioned in [5]). However,
several attemps are described in [5], [11] or [10]. Due to different metodologies
and tested systems it is very difficult to compare results, but our performance
comparison can be considered as one of the most complex due to the number of
tested systems and performed tests, too.



7 Conclusion

In this work we performed three test sets focused on computational performance
to compare our ideas implemented in METAmorphoses with other RDB to RDF
transformation tools (D2RQ and SquirrelRDF) and native RDF stores with RDB
back-end (Jena and Sesame1). METAmorphoses had the best performance in
the most tests (12 out of 13) and also other performance aspects discused in the
section 5 were better. We proved that our system of data transformation has
higher performance than other similar tools as well as native RDF repositories.

The main contribution of this paper is that we showed the on-the fly data
transformation can be faster than queries over native RDF repository – thus
it is not neccessary to migrate relational data to RDF repositories in order to
publish them as RDF.

Acknowledgements
This research has been supported by MSMT under research program no.

6840770014 and by the grant of the Czech Grant Agency no. 201/06/0648.

References

1. Svihla, M., Jelinek I.: The Database to RDF Mapping Model for an Easy Semantic
Extending of Dynamic Web Sites. Proceedings of IADIS International Conference
WWW/Internet. Lisbon, Portugal, 2005.

2. Seaborne, A. and Bizer, C.: D2RQ – Treating Non-RDF Databases as Virtual
RDF Graphs. Proceedings of the 3rd International Semantic Web Conference
(ISWC2004), Japan, 2004.

3. Steer, D.: SquirrelRDF. http://jena.sourceforge.net/SquirrelRDF/
4. Jeremy J. et al.: Jena: implementing the semantic web recommenda-

tions.Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters. New York, USA, 2004.

5. Harth, A. and Decker, S.: Optimized index structures for querying RDF from the
Web. Proceedings of LA-WEB, 2005.

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. Proceedings of the First International
Semantic Web Conference, Sardinia, Italy, 2002.

7. Ley, M.: DBLP Bibliography. http://www.informatik.uni-trier.de/ ley/db/
8. Prud’hommeaux, E. and Seaborne, A.: SPARQL Query Language for RDF. W3C

Recommendation. February 2005.
9. Beckett, D. and Grant, J.: Semantic Web Scalability and Storage: Mapping Semantic

Web Data with RDBMSes. SWAD-Europe deliverable. February 2003.
10. Streatfield, M. and Glaser, H.: Report on Summer Internship Work For the AKT

Project: Benchmarking RDF Triplestores. Technical Report. Electronics and Com-
puter Science, University of Southampton. November 2005.

11. Cyganiak, R.: Benchmarking D2RQ v0.2. Technical Report. Freie Universitt Berlin,
Germany. June 2004.


