Abstract
K-anonymisation is an approach to protecting private information contained within a dataset. Many k-anonymisation methods have been proposed recently and one class of such methods are clustering-based. These methods are able to achieve high quality anonymisations and thus have a great application potential. However, existing clustering-based techniques use different quality measures and employ different data grouping strategies, and their comparative quality and performance are unclear. In this paper, we present and experimentally evaluate a family of clustering-based k-anonymisation algorithms in terms of data utility, privacy protection and processing efficiency.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 183–199. Springer, Heidelberg (2004)
Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE ’05, pp. 217–228 (2005)
Byun, J., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymization using clustering techniques. In: DASFAA 2007, pp. 188–200 (2007)
Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)
Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy preservation. In: ICDE, pp. 205–216 (2005)
Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Information Systems 25(5), 345–366 (2000)
Hettich, S., Merz, C.J.: Uci repository of machine learning databases (1998)
Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: KDD 2002, pp. 279–288 (2002)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: ICDE 2006, p. 25 (2006)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization. In: KDD 2006, pp. 277–286 (2006)
Loukides, G., Shao, J.: Capturing data usefulness and privacy protection in k-anonymisation. In: SAC 2007, pp. 370–374 (2007)
Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: ICDE 2006, p. 24 (2006)
Nergiz, M.E., Clifton, C.: Thoughts on k-anonymization. In: 22nd International Conference on Data Engineering Workshops (ICDEW 2006), p. 96 (2006)
Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10, 557–570 (2002)
Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD 2006, pp. 229–240 (2006)
Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W-C.: Utility-based anonymization using local recoding. In: KDD 2006, pp. 785–790 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Loukides, G., Shao, J. (2007). Clustering-Based K-Anonymisation Algorithms. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_74
Download citation
DOI: https://doi.org/10.1007/978-3-540-74469-6_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74467-2
Online ISBN: 978-3-540-74469-6
eBook Packages: Computer ScienceComputer Science (R0)