Skip to main content

Parallel Image Understanding on a Multi-DSP System

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

  • 2053 Accesses

Abstract

A course-grain multiprocessor architecture, based on an array of digital signal processors (DSPs), is presented to demonstrate the possibility of a parallel implementation of image-understanding algorithms. Aerial image understanding is investigated as an application. The system is designed to exploit temporal and spatial parallelism. A good speed-up was obtained for low- and intermediate-level operations. However, the speed-up for high-level operations was poor because of processor idle times, as the number of objects to be processed at higher level tends to be small. DSPs performed well as processing elements for number-crunching operations, but the performance was not so good for implementing symbolic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cantoni, V., Lombardi, L.: Hierarchical Architectures for Computer Vision. In: Proceedings of Euromicro Workshop on Parallel and Distributed Processors, pp. 392–398 (1995)

    Google Scholar 

  2. Chen, W., Meer, P., Georgescu, B., He, W., Goodell, L.A., Foran, D.J.: Image Mining for Investigative Pathology Using Optimized Feature Extraction and Data Fusion. Computer Methods and Programs in Biomedicine 79, 59–72 (2005)

    Article  Google Scholar 

  3. Davis, L.S.: Foundations of Image Understanding. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  4. Diamant, E.: Paving the Way for Image Understanding: A New Kind of Image Decomposition is Desired. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 17–24. Springer, Heidelberg (2005)

    Google Scholar 

  5. Ercan, M.F., Fung, Y.F.: The Design and Evaluation of a Multiprocessor System for Computer Vision. Microprocessors and Microsystems 24, 365–377 (2000)

    Article  Google Scholar 

  6. Hecker, C.Y., Bolle, R.M.: On Geometric Hashing and the Generalized Hough Transform. IEEE Transactions on Systems, Man, and Cybernetics 24, 1328–1338 (1994)

    Article  Google Scholar 

  7. Grimson, W.E.L.: Medical Applications of Image Understanding. In: IEEE Expert, pp. 18–28. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  8. Kumar, V.P., Wang, C.L.: Parallelism for Image Understanding. In: Zomaya, A.D. (ed.) Parallel and Distributed Computing Handbook, pp. 1042–1070. Mcgraw-Hill, New York (1996)

    Google Scholar 

  9. Lienard, B., Desurmont, X., Barrie, B., Delaigle, J.F.: Real-time High-Level Video Understanding Using Data Warehouse. Real-Time Image Processing 2006. In: Kehtarnavaz, N., Laplante, P.A. (eds.) Proceedings of the SPIE, vol. 6063, pp. 40–53 (2006)

    Google Scholar 

  10. Navulur, K.: Multispectral Image Analysis Using the Object-Oriented Paradigm. CRC press, Boca Raton, USA (2006)

    Google Scholar 

  11. Matsuyama, T., Hwang, S.: SIGMA A Knowledge-based Aerial Image Understanding System. Plenum Press, New York (1990)

    Google Scholar 

  12. Mehrotra, R., Nichani, S., Ranganathan, N.: Corner Detection. Pattern Recognition 23, 1223–1233 (1990)

    Article  Google Scholar 

  13. Ogelia, M.R., Tadeusiewicz, R.: Picture Languages in Medical Pattern Knowledge Representation and Understanding. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 442–447. Springer, Heidelberg (2005)

    Google Scholar 

  14. Robertson, P.: An Architecture for Self-Adaptation and Its Application to Aerial Image Understanding. In: Proceedings of the first international workshop on Self-adaptive software, pp. 199–223 (2000)

    Google Scholar 

  15. Spyridonos, P., Papageorgiou, E.I., Groumpos, P.P., Nikiforidis, G.N.: Integration of Expert Knowledge and Image Analysis Techniques for Medical Diagnosis. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 110–121. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Weymouth, T.E., Amini, A.A.: Visual Perception Using a Blackboard Architecture. In: Kasturi, R., Trivedi, M., Marcel, D. (eds.) Image Analysis Applications, New York, pp. 235–281 (1990)

    Google Scholar 

  17. Wang, F.: A Knowledge-Based Vision System for Detecting Land Changes at Urban Fringes. IEEE Transactions on Geosciences and Remote Sensing 31, 136–145 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ercan, M.F. (2007). Parallel Image Understanding on a Multi-DSP System. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics