Skip to main content

A Recommender System Based on Multi-features

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

Abstract

Recommender systems are tools to help users find items that they deem of interest to them. They can be seen as an application of data mining process. In this paper, a new recommender system based on multi-features is introduced. Demographic and psychographic features are used to asses similarities between users. The model is built on a collaborative filtering method and addresses three problems: sparsity, scalability and cold-star. The sparsity problem is tackled by integrating users-documents relevant information within meta-clusters. The scalability and the cold-start problems are considered by using a suitable probability model calculated on meta-cluster information. Moreover, a weight similarity measure is introduced in order to take into account dynamic human being preferences behaviour. A prediction score for generating recommendations is proposed based on the target user previous behaviour and his/her neighbourhood preferences on the target document.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Toward a Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transaction on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Personalization Technologies: A Process-Oriented Perspective. Communications of the ACM 48(10), 83–90 (2005)

    Article  Google Scholar 

  3. Anderberg, M.: Cluster Analysis for Applications. Academic Press, New York (1973)

    MATH  Google Scholar 

  4. Baeza, R., Ribeiro, B.: Modern Information Retrieval. Addison Wesley ACM Press Series (1999)

    Google Scholar 

  5. Balabanovic, M., Shoham, Y.: Content-based collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  6. Bollacker, K., Lawrence, S., Giles, L.: A System for Automatic Personalized Tracking of Scientific Literature on the Web. In: International Conference on Digital Libraries. Proceedings of the fourth ACM Conference on Digital libraries, Berkeley, California, USA, pp. 105–113. ACM, New York (1999)

    Chapter  Google Scholar 

  7. Breese, J., Heckerman, D., Kadie, C.: Empirical Analysis of predictive algorithms for collaborative filtering. In: Proceedings of 14th Annual Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufman, San Francisco (1998)

    Google Scholar 

  8. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. In: User Modelling and User-Adapted Interaction 2007 (to appear)

    Google Scholar 

  9. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: Proceedings of ACM SIGIR’99 Workshop on Recommender Systems. ACM Press, New York (1999), citeseer.ist.psu.edu/claypool99combining.html

    Google Scholar 

  10. Cox, T., Cox, M.: Multidimensional Scaling, 2nd edn. Chapman and Hall, London (2001)

    MATH  Google Scholar 

  11. Garden, M., Dudek, G.: Mixed Collaborative and Content-Based Filtering with User-Contributed Semantic Features. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence. AAAI Press, Menlo Park, CA (2006)

    Google Scholar 

  12. Golberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time Collaborative Filtering Algorithm. UCB Electronics Research Laboratory Technical Report M00/41 (2000), Available at www.ieor.berkeley.edu/golberg/pubs/

  13. Golberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative Filtering to weave an information tapestry. Communications of the ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  14. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An Algorithm Framework for Performing Collaborative Filtering. In: Proceedings of ACM SIGIR’99, Berkeley, California, pp. 230–237. ACM Press, New York (1999)

    Google Scholar 

  15. Kim, H., Kim, J., Herlocker, J.: Feature-Based Prediction of Unknown Preferences for Nearest-Neighbour Collaborative Filtering. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, pp. 435–438. Springer, Heidelberg (2004)

    Google Scholar 

  16. Kim, Y., Yum, B., Song, J., Kim, S.: Development of a recommender system based on navigational and behaviour patterns of customers in e-commerce sites. Expert Systems with Applications 28, 381–393 (2005)

    Article  Google Scholar 

  17. Kim, J., Lee, E.: Intelligent Information Recommender System on the Internet. In: 1999 International Conference on Parallel Processing Workshops (ICPPW’99), pp. 376–380 (1999)

    Google Scholar 

  18. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  19. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

    Article  Google Scholar 

  20. Mobasher, B.: Data Mining for Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization. LNCS, vol. 4321, Springer, Heidelberg (2007), http://maya.cs.depaul.edu/~mobasher/

    Google Scholar 

  21. Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by personality diagnosis: A hybrid memory and model-based approach. In: Proceedings of the 16th Conference on Uncertainty and Artificial Intelligence, Stanford California, pp. 473–480 (2000)

    Google Scholar 

  22. Rashid, A.M., Lam, H., Karypis, G., Riedl, J.: ClustKNN: A highly Scalable Hybrid Model-& Memory-CF Algorithm. In: Proceedings of WEBKDD’06, Philadelphia, Pennsylvania USA (2006)

    Google Scholar 

  23. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of the ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, NC USA, pp. 175–186. ACM Press, New York (1994)

    Chapter  Google Scholar 

  24. Schafer, J.B., Konstan, J.A., Reidl, J.: E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery 5(1-2), 115–153 (2001)

    Article  MATH  Google Scholar 

  25. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for E-commerce. In: EC ’00 Proceedings of the 2nd ACM conference on Electronic commerce, Minneapolis, Minnesota, United States, pp. 158–167. ACM, New York (2000)

    Chapter  Google Scholar 

  26. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Recommendation Algorithm. In: Proceedings of the 10th International Conference on World Wide Web, Hong Kong, pp. 285–295 (2001)

    Google Scholar 

  27. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating ”Word of Mouth”. In: Conference on Human Factors in Computing Systems. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver Colorado, USA, pp. 210–217 (1995)

    Google Scholar 

  28. Torres, R., McNee, S., Abel, M., Konstan, J., Riedl, J.: Enhancing Digital Libraries with Techlens. In: Proceedings of JCDL’04, Tucson, Arizona, USA, pp. 228–236 (2004)

    Google Scholar 

  29. Ungar, L., Foster, D.: A Formal Approach to collaborative filtering. In: Proceedings of the Conference on Automated Learning and Discovery (CONALD’98) (1998)

    Google Scholar 

  30. Ya Tang, T., McCalla, G.: Mining Implicit Rating for Focused collaborative Filtering for Paper Recommendations. Available at http://www.ia.uned.es/~elena/um03-ws/papers/UM03workshop-Tiffany.pdf

  31. Yeong, B.C., Yoon, H.C., Soung, H.K.: Mining Changes in Customer Buying Behaviour for Collaborative Recommendations. Expert Systems with Applications 28(2), 359–369 (2005)

    Article  Google Scholar 

  32. Xuan, Z., Yuan-Yuan, S., Hyoung-Gook, K.: An Integrated Music Recommender System. IEEE Transaction on Consumer Electronic 52(3), 917–925 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trujillo, M., Millan, M., Ortiz, E. (2007). A Recommender System Based on Multi-features. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics