Skip to main content

AM-GM Difference Based Adaptive Sampling for Monte Carlo Global Illumination

  • Conference paper
  • 2017 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Abstract

Monte Carlo is the only choice for a physically correct method to do global illumination in the field of realistic image synthesis. Generally Monte Carlo based algorithms require a lot of time to eliminate the noise to get an acceptable image. Adaptive sampling is an interesting tool to reduce noise, in which the evaluation of homogeneity of pixel’s samples is the key point. In this paper, we propose a new homogeneity measure, namely the arithmetic mean - geometric mean difference (abbreviated to AM − GM difference), which is developed to execute adaptive sampling efficiently. Implementation results demonstrate that our novel adaptive sampling method can perform significantly better than classic ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenberg, D.P.: A framework for realistic image synthesis. Communications of the ACM 42, 477–494 (1999)

    Article  Google Scholar 

  2. Kajiya, J.T.: The rendering equation. Computer Graphics 20, 143–150 (1986)

    Article  Google Scholar 

  3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991)

    MATH  Google Scholar 

  4. Whitted, T.: An Improved Illumination Model for Shaded Display. Communications of the ACM 32, 343–349 (1980)

    Article  Google Scholar 

  5. Painter, J., Sloan, K.: Antialiased Ray Tracing by Adaptive Progressive Refinement. In: SIGGRAPH ’89, vol. 23, pp. 281–288 (1989)

    Google Scholar 

  6. Dippe, M.A.Z., Wold, E.H.: Antialiasing through Stochastic Sampling. In: SIGGRAPH ’85, vol. 19, pp. 69–78 (1985)

    Google Scholar 

  7. Lee, M.E., Redner, R.A., Uselton, S.P.: Statistically optimized sampling for distributed ray tracing. In: SIGGRAPH ’85: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pp. 61–68 (1985)

    Google Scholar 

  8. Purgathofer, W.: A Statistical Method for Adaptive Stochastic Sampling. Computers & Graphics 11, 157–162 (1987)

    Article  Google Scholar 

  9. Kirk, D., Arvo, J.: Unbiased variance reduction for global illumination. In: Proceedings of the 2nd Eurographics Workshop on Rendering, pp. 153–156 (1991)

    Google Scholar 

  10. Rigau, J., Feixas, M., Sbert, M.: New Contrast Measures for Pixel Supersampling. In: Proceedings of CGI’02, pp. 439–451 (2002)

    Google Scholar 

  11. Rigau, J., Feixas, M., Sbert, M.: Refinement Criteria Based on f-Divergences. In: Proceedings of Eurographics Symposium on Rendering 2003, pp. 260–269 (2003)

    Google Scholar 

  12. Mitchell, D.P.: Generating Antialiased Images at Low Sampling Densities. In: SIGGRAPH ’87, vol. 21, pp. 65–72 (1987)

    Google Scholar 

  13. Simmons, M., Sequin, C.: Tapestry: A Dynamic Mesh Based Display Representation for Interactive Rendering. In: Proceedings of the 11th Eurographics Workshop on Rendering, pp. 329–340 (2000)

    Google Scholar 

  14. Tamstorf, R., Jensen, H.W.: Adaptive Sampling and Bias Estimation in Path Tracing. In: Proceedings of Eurographics Workshop on Rendering ’97, pp. 285–295 (1997)

    Google Scholar 

  15. Bolin, M.R., Meyer, G.W.: A perceptually based adaptive sampling algorithm. In: Proceedings of SIGGRAPH’98, pp. 299–309 (1998)

    Google Scholar 

  16. Xu, Q., Sbert, M., Pan, Z.-G, Wang, W., Xing, L.-P.: Fuzziness driven adaptive sampling for monte carlo global illuminated rendering. In: Proceedings of Computer Graphics International 2006, pp. 148–159 (2006)

    Google Scholar 

  17. Xu, Q., Xing, L.-P., Wang, W., Sbert, M.: Adaptive sampling based on fuzzy inference. In: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia (GRAPHITE 2006), pp. 311–317 (2006)

    Google Scholar 

  18. He, Y., Hamza, A.B., Krim, H.: A generalized devergence measure for robust image registration. IEEE Transactions on Signal Processing 51, 1211–1220 (2003)

    Article  Google Scholar 

  19. Lin, L.-P.: Jensen’s Inequality. Mathematical Excalibur 5, 2–4 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Q., Sbert, M., Feixas, M., Zhang, J. (2007). AM-GM Difference Based Adaptive Sampling for Monte Carlo Global Illumination. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics