Skip to main content

An Efficient Identity-Based Ring Signature Scheme and Its Extension

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

  • 2109 Accesses

Abstract

Ring signature is an important cryptographical tool to realize full anonymity. In many ring signature schemes, a member of the ring produced a signature δ, but his own cannot authenticate this signature δ was indeed produced by himself. To address it, in this work, we extend ring signature notion to present a novel scheme: ring signature scheme with self-authenticating which can authenticate that a member possesses a signature’s ownership. To improve efficiency of the scheme, our proposed scheme does not use MapToPoint function in Key Extract phase. In our proposed scheme, one pairing is needed in the signing phased and two pairings are needed in the verifying phase. Finally, we discuss the batch verification of our ring signature, and show that no matter how many signatures, only two pairing operators are needed in the batch verification. Thus, it is very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canetti, R., Goldreich, O., Halevi, S.: The random oralce methodology. Journal of ACM 51(4), 557–594 (2004)

    Article  Google Scholar 

  2. Cui, S., Duan, P., Chan, C., Cheng, X.: An efficient identity-based signature scheme and its applications. International journal of network security 5(1), 89–98 (2007)

    Google Scholar 

  3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  4. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  5. Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocol. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  6. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Sherman, S.M., Chow, L.C.K., Hui, Yiu, S.M.: Identity Based Threshold Ring Signature. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 218–232. Springer, Heidelberg (2005)

    Google Scholar 

  8. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: ID-Based Ring Signature Scheme Secure in the Standard Model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Constructions Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Komano, Y., Ohta, K., Shimbo, A., Kawamura, S.: Toward the Fair Anonymous Signatures: Deniable Ring Signatures Topics in Cryptology C. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 174–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Herranz, J., Laguillaumie, F.: Blind Ring Signatures Secure Under the Chosen-Target-CDH Assumption. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 117–130. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Tsang, P.P., Wei, V.K.: Short Linkable Ring Signatures for E-Voting, E-Cash and Attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)

    Google Scholar 

  13. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Advances in Crytology’84. LNCS, pp. 47–53. Springer, Heidelberg (1984)

    Google Scholar 

  14. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Herranz, J., Saez, G.: New Identity-based Ring Signature Schemes. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 27–39. Springer, Heidelberg (2004)

    Google Scholar 

  16. Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

    Google Scholar 

  17. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

    Google Scholar 

  18. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size ID-based Linkable and Revocable-iff-Linked Ring signatue. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J. (2007). An Efficient Identity-Based Ring Signature Scheme and Its Extension. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics