Skip to main content

A Ghost Cell-Based Data Structure for Multiresolution Meshes

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

  • 2111 Accesses

Abstract

Multiresolution meshes enable us to build representations of geometric objects at different Levels of Detail (LODs). We introduce a multiresolution scheme whose data structure allows us to separately restore the geometry and topology of a mesh during the refinement process. Additionally, we use a topological criterion (not a geometric criterion, as usual in the literature) to quickly simplify a mesh, what seems to make the corresponding simplification algorithm adequate for real-time applications such as, for example, on-line computer games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Campagna, S., Kobbelt, L., Seidel, H.P.: Directed edges – A Scalable Representation for Triangle Meshes. J. Graph. Tools 3, 1–12 (1998)

    Google Scholar 

  2. Danovaro, E., de Floriani, L., Magillo, P., Puppo, E.: Representing Vertex-Based Simplicial Multi-Complexes. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 128–147. Springer, Heidelberg (2002)

    Google Scholar 

  3. Dyn, N.: Interpolatory Subdivision Schemes. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 25–50. Springer, Heidelberg (2002)

    Google Scholar 

  4. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  5. El-Sana, J., Varshney, A.: Generalized View-Dependent Simplification. Comp. Graph. Forum 18, 83–94 (1999)

    Article  Google Scholar 

  6. de Floriani, L., Magillo, P.: Multiresolution Mesh Representation: Models and Data Structures. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 363–418. Springer, Heidelberg (2002)

    Google Scholar 

  7. de Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A Multi-Resolution Topological Representation for Non-Manifold Meshes. In: Proc. 7th ACM Symp. Solid Modeling and Applications, pp. 159–170. ACM Press, New York (2002)

    Google Scholar 

  8. Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metrics. In: Proc. SIGGRAPH’97, vol. 31, pp. 209–216. ACM Press, New York (1997)

    Google Scholar 

  9. Garland, M.: Multiresolution Modeling: Survey and Future Opportunities. In: Eurographics’99 State-of-Art Report. Eurographics Association (1999)

    Google Scholar 

  10. Guéziec, A., Taubin, G., Lazarus, F., Horn, W.: Simplicial Maps for Progressive Transmission of Polygonal Surfaces. In: Proc. 3rd ACM Symp. Virtual Reality Modeling Language, pp. 25–31. ACM Press, New York (1998)

    Chapter  Google Scholar 

  11. Hoppe, H.: Progressive Meshes. In: Proc. SIGGRAPH’96, vol. 30, pp. 99–108. ACM Press, New York (1996)

    Google Scholar 

  12. Hoppe, H.: View-Dependent Refinement of Progressive Meshes. In: Proc. SIGGRAPH’97, vol. 31, pp. 189–198. ACM Press, New York (1997)

    Google Scholar 

  13. Janich, K.: Topology. Undergraduate Texts in Mathematics. Springer, Heidelberg (1984)

    Google Scholar 

  14. Kallmann, M., Thalmann, D.: Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information. J. Graph. Tools 6, 7–18 (2001)

    Google Scholar 

  15. Loop, C.: Managing Adjacency in Triangular Meshes. Microsoft Research, Technical Report MSR-TR-2000-24 (2000)

    Google Scholar 

  16. Mäntyla, M.: An Introduction to Solid Modeling. Computer Science Press, New York (1988)

    Google Scholar 

  17. Ni, X., Bloor, S.: Performance evaluation of boundary data structures. IEEE Comp. Graph. and Appl. 14, 66–77 (1994)

    Google Scholar 

  18. Popovic, J., Hope, H.: Progressive Simplicial Complexes. In: Proc. SIGGRAPH’97, vol. 31, pp. 217–224. ACM Press, New York (1997)

    Google Scholar 

  19. Pupo, E.: Variable Resolution Terrain Surfaces. In: Proc. 8th Canadian Conf. on Comput. Geometry, Ottawa, Canada, August 12-15, pp. 202–210 (1996)

    Google Scholar 

  20. Sabin, M.: Subdivision of Box-Splines. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 3–24. Springer, Heidelberg (2002)

    Google Scholar 

  21. Silva, F., Gomes, A.: Adjacency and Incidence Framework - A Data Structure for Efficient and Fast Management of Multiresolution Meshes. In: Proc. Int. Conf. Comp. Graph. and Int. Tech. in Australasia and South East Asia, pp. 159–166. ACM Press, New York (2003)

    Chapter  Google Scholar 

  22. Silva, F., Gomes, A.: Normal-Based Simplification Algorithm for Meshes. In: Proc. Theory and Practice of Comp. Graph, pp. 211–218. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  23. Southern, R., Perkins, S., Steyn, B., Muller, A., Marais, P., Blake, E.: A Stateless Client for Progressive View-Dependent Transmission. In: Proc. 6th Int. Conf. on 3D Web Technology, pp. 43–50. ACM Press, New York (2001)

    Chapter  Google Scholar 

  24. Velho, L., de Figueredo, L., Gomes, J.: A Unified Approach for Hierarchical Adaptive Tesselation of Surfaces. ACM Transactions on Graphics 18, 329–360 (1999)

    Article  Google Scholar 

  25. Weiler, K.: The Radial Edge Structure: a Topological Representation for Non-Manifold Geometric Boundary Modeling. In: Wozny, M., McLaughlin, H., Encarnação, J. (eds.) Geometric Modeling for CAD Applications, pp. 3–36. Elsevier Science Publishers, North-Holland (1988)

    Google Scholar 

  26. Xia, J., El-Sana, J., Varshney, A.: AdaptiveReal-Time Level-of-Detail-Based Rendering for Polygonal Models. IEEE Trans. on Visual. and Comp. Graph 3, 171–183 (1997)

    Article  Google Scholar 

  27. Zorin, D., Schröder, P.: Subdivisions for Modeling and Animation. ACM SIGGRAPH 2000 Course Notes No.23. ACM Press, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodrigues, R., Morgado, J., Silva, F., Gomes, A. (2007). A Ghost Cell-Based Data Structure for Multiresolution Meshes. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics