Abstract
Multiresolution meshes enable us to build representations of geometric objects at different Levels of Detail (LODs). We introduce a multiresolution scheme whose data structure allows us to separately restore the geometry and topology of a mesh during the refinement process. Additionally, we use a topological criterion (not a geometric criterion, as usual in the literature) to quickly simplify a mesh, what seems to make the corresponding simplification algorithm adequate for real-time applications such as, for example, on-line computer games.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Campagna, S., Kobbelt, L., Seidel, H.P.: Directed edges – A Scalable Representation for Triangle Meshes. J. Graph. Tools 3, 1–12 (1998)
Danovaro, E., de Floriani, L., Magillo, P., Puppo, E.: Representing Vertex-Based Simplicial Multi-Complexes. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 128–147. Springer, Heidelberg (2002)
Dyn, N.: Interpolatory Subdivision Schemes. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 25–50. Springer, Heidelberg (2002)
Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)
El-Sana, J., Varshney, A.: Generalized View-Dependent Simplification. Comp. Graph. Forum 18, 83–94 (1999)
de Floriani, L., Magillo, P.: Multiresolution Mesh Representation: Models and Data Structures. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 363–418. Springer, Heidelberg (2002)
de Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A Multi-Resolution Topological Representation for Non-Manifold Meshes. In: Proc. 7th ACM Symp. Solid Modeling and Applications, pp. 159–170. ACM Press, New York (2002)
Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metrics. In: Proc. SIGGRAPH’97, vol. 31, pp. 209–216. ACM Press, New York (1997)
Garland, M.: Multiresolution Modeling: Survey and Future Opportunities. In: Eurographics’99 State-of-Art Report. Eurographics Association (1999)
Guéziec, A., Taubin, G., Lazarus, F., Horn, W.: Simplicial Maps for Progressive Transmission of Polygonal Surfaces. In: Proc. 3rd ACM Symp. Virtual Reality Modeling Language, pp. 25–31. ACM Press, New York (1998)
Hoppe, H.: Progressive Meshes. In: Proc. SIGGRAPH’96, vol. 30, pp. 99–108. ACM Press, New York (1996)
Hoppe, H.: View-Dependent Refinement of Progressive Meshes. In: Proc. SIGGRAPH’97, vol. 31, pp. 189–198. ACM Press, New York (1997)
Janich, K.: Topology. Undergraduate Texts in Mathematics. Springer, Heidelberg (1984)
Kallmann, M., Thalmann, D.: Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information. J. Graph. Tools 6, 7–18 (2001)
Loop, C.: Managing Adjacency in Triangular Meshes. Microsoft Research, Technical Report MSR-TR-2000-24 (2000)
Mäntyla, M.: An Introduction to Solid Modeling. Computer Science Press, New York (1988)
Ni, X., Bloor, S.: Performance evaluation of boundary data structures. IEEE Comp. Graph. and Appl. 14, 66–77 (1994)
Popovic, J., Hope, H.: Progressive Simplicial Complexes. In: Proc. SIGGRAPH’97, vol. 31, pp. 217–224. ACM Press, New York (1997)
Pupo, E.: Variable Resolution Terrain Surfaces. In: Proc. 8th Canadian Conf. on Comput. Geometry, Ottawa, Canada, August 12-15, pp. 202–210 (1996)
Sabin, M.: Subdivision of Box-Splines. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 3–24. Springer, Heidelberg (2002)
Silva, F., Gomes, A.: Adjacency and Incidence Framework - A Data Structure for Efficient and Fast Management of Multiresolution Meshes. In: Proc. Int. Conf. Comp. Graph. and Int. Tech. in Australasia and South East Asia, pp. 159–166. ACM Press, New York (2003)
Silva, F., Gomes, A.: Normal-Based Simplification Algorithm for Meshes. In: Proc. Theory and Practice of Comp. Graph, pp. 211–218. IEEE Computer Society Press, Los Alamitos (2004)
Southern, R., Perkins, S., Steyn, B., Muller, A., Marais, P., Blake, E.: A Stateless Client for Progressive View-Dependent Transmission. In: Proc. 6th Int. Conf. on 3D Web Technology, pp. 43–50. ACM Press, New York (2001)
Velho, L., de Figueredo, L., Gomes, J.: A Unified Approach for Hierarchical Adaptive Tesselation of Surfaces. ACM Transactions on Graphics 18, 329–360 (1999)
Weiler, K.: The Radial Edge Structure: a Topological Representation for Non-Manifold Geometric Boundary Modeling. In: Wozny, M., McLaughlin, H., Encarnação, J. (eds.) Geometric Modeling for CAD Applications, pp. 3–36. Elsevier Science Publishers, North-Holland (1988)
Xia, J., El-Sana, J., Varshney, A.: AdaptiveReal-Time Level-of-Detail-Based Rendering for Polygonal Models. IEEE Trans. on Visual. and Comp. Graph 3, 171–183 (1997)
Zorin, D., Schröder, P.: Subdivisions for Modeling and Animation. ACM SIGGRAPH 2000 Course Notes No.23. ACM Press, New York (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rodrigues, R., Morgado, J., Silva, F., Gomes, A. (2007). A Ghost Cell-Based Data Structure for Multiresolution Meshes. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_61
Download citation
DOI: https://doi.org/10.1007/978-3-540-74477-1_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74475-7
Online ISBN: 978-3-540-74477-1
eBook Packages: Computer ScienceComputer Science (R0)