Skip to main content

Bézier Curve and Surface Fitting of 3D Point Clouds Through Genetic Algorithms, Functional Networks and Least-Squares Approximation

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

  • 2652 Accesses

Abstract

This work concerns the problem of curve and surface fitting. In particular, we focus on the case of 3D point clouds fitted with Bézier curves and surfaces. Because these curves and surfaces are parametric, we are confronted with the problem of obtaining an appropriate parameterization of the data points. On the other hand, the addition of functional constraints introduces new elements that classical fitting methods do not account for. To tackle these issues, two Artificial Intelligence (AI) techniques are considered in this paper: (1) for the curve/surface parameterization, the use of genetic algorithms is proposed; (2) for the functional constraints problem, the functional networks scheme is applied. Both approaches are combined with the least-squares approximation method in order to yield suitable methods for Bézier curve and surface fitting. To illustrate the performance of those methods, some examples of their application on 3D point clouds are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE Trans. on Visualization and Computer Graphics 7(1), 1–16 (2001)

    Article  Google Scholar 

  2. Bradley, C., Vickers, G.W.: Free-form surface reconstruction for machine vision rapid prototyping. Optical Engineering 32(9), 2191–2200 (1993)

    Article  Google Scholar 

  3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

    Article  Google Scholar 

  4. Castillo, E., Iglesias, A.: Some characterizations of families of surfaces using functional equations. ACM Transactions on Graphics 16(3), 296–318 (1997)

    Article  Google Scholar 

  5. Castillo, E., Cobo, A., Gomez-Nesterkin, R., Hadi, A.S.: A general framework for functional networks. Networks 35(1), 70–82 (2000)

    Article  MATH  Google Scholar 

  6. Castillo, E., Iglesias, A., Ruiz-Cobo, R.: Functional Equations in Applied Sciences. Elsevier Pub., Amsterdam (2005)

    MATH  Google Scholar 

  7. Echevarría, G., Iglesias, A., Gálvez, A.: Extending neural networks for B-spline surface reconstruction. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002. LNCS, vol. 2330, pp. 305–314. Springer, Heidelberg (2002)

    Google Scholar 

  8. Goldberg, D.E.: Optimal Initial Population Size for Binary-Coded Genetic Algorithms, TCGA Report No.85001. University of Alabama (1985)

    Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Gu, P., Yan, X.: Neural network approach to the reconstruction of free-form surfaces for reverse engineering. Computer Aided Design 27(1), 59–64 (1995)

    Article  Google Scholar 

  11. Hoffmann, M., Varady, L.: Free-form surfaces for scattered data by neural networks. J. Geometry and Graphics 2, 1–6 (1998)

    MATH  Google Scholar 

  12. Holland, J.H.: Adaptation in Natural and Artificial Systems. Michigan Press, Ann Arbor (1975)

    Google Scholar 

  13. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proc. of SIGGRAPH92, vol. 26(2), pp. 71–78 (1992)

    Google Scholar 

  14. Iglesias, A., Gálvez, A.: A New Artificial Intelligence Paradigm for Computer-Aided Geometric Design. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 200–213. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Iglesias, A., Echevarría, G., Gálvez, A.: Functional networks for B-spline surface reconstruction. Future Generation Computer Systems 20(8), 1337–1353 (2004)

    Article  Google Scholar 

  16. Knopf, G.K., Kofman, J.: Free-form surface reconstruction using Bernstein basis function networks. In: Dagli, C.H., et al. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks, vol. 9, pp. 797–802. ASME Press (1999)

    Google Scholar 

  17. Pottmann, H., et al.: Industrial geometry: recent advances and applications in CAD. Computer-Aided Design 37, 751–766 (2005)

    Article  Google Scholar 

  18. Renner, G., Ekrt, A.: Genetic algorithms in computer aided design. Computer-Aided Design 35, 709–726 (2003)

    Article  Google Scholar 

  19. Varady, T., Martin, R.: Reverse Engineering. In: Farin, G., Hoschek, J., Kim, M. (eds.) Handbook of Computer Aided Geometric Design. Elsevier Science, Amsterdam (2002)

    Google Scholar 

  20. Weiss, V., Andor, L., Renner, G., Varady, T.: Advanced surface fitting techniques. Computer Aided Geometric Design 19, 19–42 (2002)

    Article  MATH  Google Scholar 

  21. Yoshimoto, F., Harada, T., Yoshimoto, Y.: Data fiting with a spline using a real-coded algorithm. Computer-Aided Design 35, 751–760 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J. (2007). Bézier Curve and Surface Fitting of 3D Point Clouds Through Genetic Algorithms, Functional Networks and Least-Squares Approximation. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics