Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4706))

Included in the following conference series:

  • 2095 Accesses

Abstract

Monte Carlo is the only choice of physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Reusing light transport paths is an interesting and effective tool to eliminate noise, which is one of the main problems of Monte Carlo based global illumination algorithms, such as Monte Carlo ray tracing. But reusing paths technique tends to group spike noise to form noise patches in the images. We propose an alternative way to implementing the reuse of paths to tackle this problem in this paper. Experimental results show that our new way is very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bekaert, P., Sbert, M., Halton, J.: Accelerating Path Tracing by Re-Using Paths. In: Proceedings of Eurographics Workshop on Rendering 2002, pp. 125–134 (2002)

    Google Scholar 

  2. Greenberg, D.P.: A framework for realistic image synthesis. Communications of the ACM 42, 44–53 (1999)

    Article  Google Scholar 

  3. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A.K. Peters (2001)

    Google Scholar 

  4. Kajiya, J.T.: The rendering equation. Computer & Graphics 4, 143–150 (1986)

    Article  Google Scholar 

  5. Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Santo, H.P. (ed.) Compugraphics’93 Conference Proceedings, Alvor, Portugal, pp. 145–153 (1993)

    Google Scholar 

  6. Veach, E., Guibas, L.J.: Optimally combining sampling techniques for Monte Carlo rendering. In: SIGGRAPH 95 Conference Proceedings, pp. 419–428 (1995)

    Google Scholar 

  7. Purgathofer, W.: A statistical method for adaptive stochastic sampling. Computer & Graphics, 157–162 (1987)

    Google Scholar 

  8. Veach, E., Guibas, L.J.: Metropolis light transport. In: SIGGRAPH 97 Conference Proceedings, pp. 65–76 (1997)

    Google Scholar 

  9. Ward, G.J., Heckbert, P.: Irradiance gradients. In: Proceedings of Third Eurographics Workshop on Rendering, pp. 85–98 (1992)

    Google Scholar 

  10. McCool, M.D.: Anisotropic diffusion for Monte Carlo noise reduction. ACM Transactions on Graphics 18, 171–194 (1999)

    Article  Google Scholar 

  11. Rushmeier, H.E., Ward, G.J.: Energy preserving non-linear filters. In: Proceedings of SIGGRAPH 94, pp. 131–138 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Q., Sbert, M. (2007). A New Way to Re-using Paths. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74477-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74477-1_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74475-7

  • Online ISBN: 978-3-540-74477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics