Skip to main content

An Effective Unconditionally Stable Algorithm for Dispersive Finite Difference Time Domain Simulations

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4707))

Included in the following conference series:

  • 1155 Accesses

Abstract

Unconditionally stable formulations of the stretched coordinates perfectly matched layer (SCPML) are presented for truncating linear dispersive finite difference time domain (FDTD) grids. In the proposed formulations, the Crank Nicolson and the Bilinear frequency approximation techniques are incorporated with the SCPML to obtain the update equations for the field components in linear dispersive media. Numerical example carried out in one dimensional Lorentz dispersive FDTD domain is included and it has been observed that the proposed formulations not only give accurate results but also remove completely the stability limit of the conventional FDTD algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Taflove, A., Hangess, S.C.: Computational electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech-House, Boston (2000)

    MATH  Google Scholar 

  3. Chew, W.C., Weedon, W.H.: A 3-D perfectly matched medium from modified Maxwell’s equation with stretched coordinates. Microwave and Optical Technology Letters 7(13), 599–604 (1994)

    Article  Google Scholar 

  4. Gedney, S.D.: An anisotropic perfectly-matched layer-absorbing medium for the truncation of FD-TD lattices. IEEE Transactions on Antennas and Propagation 44(12), 1630–1639 (1996)

    Article  Google Scholar 

  5. Cummer, S.A.: A simple, nearly perfectly matched layer for general electromagentic media. IEEE Microwave and Wireless Components Letters 13(3), 128–130 (2003)

    Article  Google Scholar 

  6. Namiki, T.: A new FDTD algorithm based on alternating-direction implicit method. IEEE Transactions on Microwave Theory and Techniques 47(10), 2003–2007 (1999)

    Article  Google Scholar 

  7. Gedney, S.D., Liu, G., Roden, J.A., Zhu, A.: Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method. IEEE Transactions on Antennas and Propagation 49(11), 1554–1559 (2001)

    Article  MATH  Google Scholar 

  8. Ramadan, O.: Unconditionally stable ADI-FDTD implementation of PML for frequency dispersive debye media. Electron. Lett. 40(4), 230–232 (2004)

    Article  MathSciNet  Google Scholar 

  9. Carcia, S.G., Lee, T.W., Hagness, S.C.: On the accuracy of the ADI-FDTD method. IEEE Antennas and Wireless Propagation Letters 1, 31–34 (2002)

    Article  Google Scholar 

  10. Ramadan, O.: Generalized unconditionally stable Crank-Nicolson PML formulations for truncating FDTD domains. In: The 35th European Microwave Conference (EuMC), Paris, France (October 4-6, 2005)

    Google Scholar 

  11. Proakis, J.G., Manolakis, D.G.: Digital signal processing: principles, algorithms and applications, 3rd edn. Prentice-Hall, Englewood Cliffs (1995)

    Google Scholar 

  12. Pereda, J.A., Vielva, L.A., Vegas, A., Prieto, A.: Analyzing the stability of the FDTD technique by combining the Von Neumann method with Routh-Hurwitz criterion. IEEE Transactions on Microwave Theory and Techniques 49(2), 377–381 (2001)

    Article  Google Scholar 

  13. Joseph, R.M., Hagness, S.C., Taflove, A.: Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Optics Letters 16(18), 1412–1414 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramadan, O. (2007). An Effective Unconditionally Stable Algorithm for Dispersive Finite Difference Time Domain Simulations. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74484-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74482-5

  • Online ISBN: 978-3-540-74484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics