Abstract
In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Nonnegative Tensor Factorization (NTF) that are robust in the presence of noise and have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, and nonnegative neural sparse coding. We propose to use local cost functions whose simultaneous or sequential (one by one) minimization leads to a very simple ALS algorithm which works under some sparsity constraints both for an under-determined (a system which has less sensors than sources) and over-determined model. The extensive experimental results confirm the validity and high performance of the developed algorithms, especially with usage of the multi-layer hierarchical NMF. Extension of the proposed algorithm to multidimensional Sparse Component Analysis and Smooth Component Analysis is also proposed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cichocki, A., Amari, S.: Adaptive Blind Signal And Image Processing (New revised and improved edition). John Wiley, New York (2003)
Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada (2005)
Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: International Conference of Computer Vision (ICCV), pp. 50–57 (2005)
Heiler, M., Schnoerr, C.: Controlling sparseness in non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 56–67. Springer, Heidelberg (2006)
Hoyer, P.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)
Morup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M.: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29, 938–947 (2006)
Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. John Wiley and Sons, New York (2004)
Oja, E., Plumbley, M.D.: Blind separation of positive sources by globally convergent gradient search. Neural Computation 16, 1811–1825 (2004)
Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)
Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis (in press, 2006)
Cichocki, A., Amari, S., Zdunek, R., Kompass, R., Hori, G., He, Z.: Extended SMART algorithms for non-negative matrix factorization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 548–562. Springer, Heidelberg (2006)
Kim, M., Choi, S.: Monaural music source separation: Nonnegativity, sparseness, and shift-invariance. In: Rosca, J., Erdogmus, D., PrÃncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 617–624. Springer, Heidelberg (2006)
Zdunek, R., Cichocki, A.: Non-negative matrix factorization with quasi-Newton optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 870–879. Springer, Heidelberg (2006)
Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with constrained second-order optimization. Signal Processing 87, 1904–1916 (2007)
Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorization. Electronics Letters 42, 947–948 (2006)
Murray, J.F., Kreutz-Delgado, K.: Learning sparse overcomplete codes for images. Journal of VLSI Signal Processing 45, 97–110 (2006)
Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)
Cichocki, A., Zdunek, R.: NTFLAB for Signal Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cichocki, A., Zdunek, R., Amari, Si. (2007). Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-74494-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74493-1
Online ISBN: 978-3-540-74494-8
eBook Packages: Computer ScienceComputer Science (R0)