Skip to main content

Text Clustering on Latent Thematic Spaces: Variants, Strengths and Weaknesses

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

Deriving a thematically meaningful partition of an unlabeled text corpus is a challenging task. In comparison to classic term-based document indexing, the use of document representations based on latent thematic generative models can lead to improved clustering. However, determining a priori the optimal indexing technique is not straightforward, as it depends on the clustering problem faced and the partitioning strategy adopted. So as to overcome this indeterminacy, we propose deriving a consensus labeling upon the results of clustering processes executed on several document representations. Experiments conducted on subsets of two standard text corpora evaluate distinct clustering strategies based on latent thematic spaces and highlight the usefulness of consensus clustering to overcome the optimal document indexing indeterminacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. J. American Society Information Science 6(41), 391–407 (1990)

    Article  Google Scholar 

  2. Fred, A., Jain, A.K.: Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)

    Article  Google Scholar 

  3. Hersh, W., Buckley, C., Leone, T., Hichman, D.: OHSUMED: an interactive retrieval evaluation and new large text collection for research. In: Proc. of the 17th ACM SIGIR Conference, pp. 192–201 (1994)

    Google Scholar 

  4. Hettich, S., Bay, S.D.: The UCI KDD Archive. University of California at Irvine, Dept. of Information and Computer Science (1999), http://kdd.ics.uci.edu

  5. Hoyer, P.O.: Non-Negative Matrix Factorization with Sparseness Constraints. J. Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  Google Scholar 

  6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: a Survey. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  7. Kabán, A., Girolami, M.: Unsupervised Topic Separation and Keyword Identification in Document Collections: a Projection Approach. Dept. of Computing and Information Systems, University of Paisley. Technical Report Nr. 10 (2000)

    Google Scholar 

  8. Kolenda, T., Hansen, L.K., Sigurdsson, S.: Independent Components in Text. In: Girolami, M. (ed.) Advances in Independent Component Analysis, pp. 241–262. Springer, Heidelberg (2000)

    Google Scholar 

  9. Kolenda, T.: Clustering text using Independent Component Analysis. Inst. of Informatics and Mathematical Modelling, Tech. University of Denmark. T.R (2002)

    Google Scholar 

  10. Lee, D.D., Seung, H.S.: Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  11. Sebastiani, F.: Machine Learning in Automated Text Categorisation. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  12. Sevillano, X., Alías, F., Socoró, J.C.: Reliability in ICA-Based Text Classification. In: Proc. of the 5th Intl. Conference on Independent Component Analysis and Blind Signal Separation, pp. 1210–1217 (2004)

    Google Scholar 

  13. Sevillano, X., Cobo, G., Alías, F., Socoró, J.C.: A Hierarchical Consensus Architecture for Robust Document Clustering. In: Proc. of the 29th ECIR Conference, pp. 741–744 (2007)

    Google Scholar 

  14. Shafiei, M., Wang, S., Zhang, R., Milios, E., Tang, B., Tougas, J., Spiteri, R.: A Systematic Study of Document Representation and Dimension Reduction for Text Clustering. Technical Report CS-2006-05. Dalhousie University (2006)

    Google Scholar 

  15. Siersdorfer, S., Sizov, S.: Restrictive Clustering and Metaclustering for Self-Organizing Document Collections. In: Proc. of the 27th ACM SIGIR Conference, pp. 226–233 (2004)

    Google Scholar 

  16. Strehl, A., Ghosh, J.: Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions. J. Machine Learning Research 3, 583–617 (2002)

    Article  MathSciNet  Google Scholar 

  17. Tang, B., Shepherd, M., Milios, E., Heywood, M.I.: Comparing and Combining Dimension Reduction Techniques for Efficient Text Clustering. In: Proc. of the Intl. Workshop on Feature Selection for Data Mining, pp. 17–26 (2005)

    Google Scholar 

  18. Xu, W., Liu, X., Gong, Y.: Document Clustering Based on Non-Negative Matrix Factorization. In: Proc. of the 26th ACM SIGIR Conference, vol. 2, pp. 267–273 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sevillano, X., Cobo, G., Alías, F., Socoró, J.C. (2007). Text Clustering on Latent Thematic Spaces: Variants, Strengths and Weaknesses. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics