Abstract
We study the compressed word problem: a variant of the word problem for finitely generated groups where the input word is given by a context-free grammar that generates exactly one string. We show that finite extensions and free products preserve the complexity of the compressed word problem. Also, the compressed word problem for a graph group can be solved in polynomial time. These results allow us to obtain new upper complexity bounds for the word problem for certain automorphism groups and group extensions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baudisch, A.: Subgroups of semifree groups. Acta Math. Acad. Sci. Hungar. 38, 19–28 (1981)
Baumslag, G., Cannonito, F.B., Miller III, C.F.: Infinitely generated subgroups of finitely presented groups. Math. Z. 153(2), 117–134 (1977)
Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: From word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)
Brady, N., Meier, J.: Connectivity at infinity for right angled Artin groups. Trans. Amer. Math. Soc. 353, 117–132 (2001)
Cannonito, F.B., Gatterdam, R.W.: The word problem and power problem in 1-relator groups are primitive recursive. Pacific J. Math. 61(2), 351–359 (1975)
Cockcroft, W.H.: The word problem in a group extension. Quart. J. Math. Oxford Ser. 2(2), 123–134 (1951)
Crisp, J., Wiest, B.: Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4, 439–472 (2004)
Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990)
Diekert, V.: Word problems over traces which are solvable in linear time. Theoret. Comput. Sci. 74, 3–18 (1990)
Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)
Droms, C.: Graph groups, coherence and three-manifolds. J. Algebra 106(2), 484–489 (1985)
Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Jones and Bartlett, Boston (1992)
Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)
Green, E.R.: Graph Products of Groups. PhD thesis, The University of Leeds (1990)
Hagenah, C.: Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis, University of Stuttgart, Institut für Informatik (2000)
Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)
Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory, and random walks. J. Algebra 264(2), 665–694 (2003)
Laurence, M.R.: A generating set for the automorphism group of a graph group. J. London Math. Soc (2) 52(2), 318–334 (1995)
Lifshits, Y.: Processing compressed texts: a tractability border. In: Proc. CPM 2007. Springer, Heidelberg (to appear, 2007)
Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24(3), 522–526 (1977)
Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006)
Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg (1977)
Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.) Combinatorial Pattern Matching. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, London, UK (1994)
Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)
Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 262–272. Springer, Heidelberg (1999)
Rips, E., Sela, Z.: Canonical representatives and equations in hyperbolic groups. Invent. Math. 120, 489–512 (1995)
Schleimer, S.: Polynomial-time word problems. In: Commentarii Mathematici Helvetici (to appear)
Servatius, H.: Automorphisms of graph groups. J. Algebra 126(1), 34–60 (1989)
Simon, H.-U.: Word problems for groups and contextfree recognition. In: Proc. FCT 1979, pp. 417–422. Akademie-Verlag (1979)
Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer, Heidelberg (1995)
Wrathall, C.: The word problem for free partially commutative groups. J. Symbolic Comput. 6(1), 99–104 (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lohrey, M., Schleimer, S. (2007). Efficient Computation in Groups Via Compression. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds) Computer Science – Theory and Applications. CSR 2007. Lecture Notes in Computer Science, vol 4649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74510-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-74510-5_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74509-9
Online ISBN: 978-3-540-74510-5
eBook Packages: Computer ScienceComputer Science (R0)