Skip to main content

Pushing Random Walk Beyond Golden Ratio

  • Conference paper
Computer Science – Theory and Applications (CSR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4649))

Included in the following conference series:

  • 729 Accesses

Abstract

We propose a simple modification of a well-known Random Walk algorithm for solving the Satisfiability problem and analyze its performance on random CNFs with a planted solution. We rigorously prove that the new algorithm solves the Full CNF with high probability, and for random CNFs with a planted solution of high density finds an assignment that differs from the planted in only ε-fraction of variables. In the experiments the algorithm solves random CNFs with a planted solution of any density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random 3-SAT. In: IEEE Symposium on Foundations of Computer Science, pp. 590–600 (2000)

    Google Scholar 

  2. Alekhnovich, M., Ben-Sasson, E.: Analysis of the random walk algorithm on random 3-CNFs Technical Report ECCC TR04-016 (2002)

    Google Scholar 

  3. Bulatov, A.A., Skvortsov, E.S.: Efficiency of local search. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 297–310. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Flaxman, A.: A spectral technique for random satisfiable 3-cnf formulas. In: SODA 2003, pp. 357–363 (2003)

    Google Scholar 

  5. Koutsoupias, E., Papadimitriou, C.: On the greedy algorithm for satisfiability. Information Processing Letters 43(1), 53–55 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Raghavan, P., Motwani, R.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  7. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: Proceedings of the 32nd Annual IEEE FOCS 1991, pp. 163–169 (1991)

    Google Scholar 

  8. Feige, U., Vilenchik, D.: A local search algorithm for 3sat. Technical report, The Weizmann Institute of Science (2004)

    Google Scholar 

  9. Wormald, N.: Differential equations for random processes and random graphs. The Annals of Applied Probability 5(4), 1217–1235 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Volker Diekert Mikhail V. Volkov Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amiri, E., Skvortsov, E. (2007). Pushing Random Walk Beyond Golden Ratio. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds) Computer Science – Theory and Applications. CSR 2007. Lecture Notes in Computer Science, vol 4649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74510-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74510-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74509-9

  • Online ISBN: 978-3-540-74510-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics