Skip to main content

DWFIST: Leveraging Calendar-Based Pattern Mining in Data Streams

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4654))

Included in the following conference series:

  • 1230 Accesses

Abstract

Calendar-based pattern mining aims at identifying patterns on specific calendar partitions. Potential calendar partitions are for example: every Monday, every first working day of each month, every holiday. Providing flexible mining capabilities for calendar-based partitions is especially challenging in a data stream scenario. The calendar partitions of interest are not known a priori and at each point in time only a subset of the detailed data is available. We show how a data warehouse approach can be applied to this problem. The data warehouse that keeps track of frequent itemsets holding on different partitions of the original stream has low storage requirements. Nevertheless, it allows to derive sets of patterns that are complete and precise. This work demonstrates the effectiveness of our approach by a series of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proc. ACM SIGMOD, pp. 207–216. ACM Press, New York (1993)

    Google Scholar 

  2. Ramaswamy, S., Mahajan, S., Silberschatz, A.: On the discovery of interesting patterns in association rules. In: Proc. of the VLDB Conf., pp. 368–379 (1998)

    Google Scholar 

  3. Demaine, E.D., L´opez-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S: Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In: Kargupta, H., et al. (eds.) Data Mining: Next Generation Challenges and Future Directions, AAAI/MIT Press (2003)

    Google Scholar 

  5. Xie, Z.-j., Chen, H., Li, C.: MFIS-Mining Frequent Itemsets on Data Streams. In: Proceeding of the Advanced Data Mining and Applications, pp. 1085–1093 (2006)

    Google Scholar 

  6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceeding of the 2000 SIGMOD Conference, Dallas, Texas, May 2000, pp. 1–12 (2000)

    Google Scholar 

  7. Karp, R.M., Papadimitriou, C.H., Shenker, S.: A simple algorithm for finding frequent elements in streams and bags. ACM Trans. Database Systems (2003)

    Google Scholar 

  8. Monteiro, R.S., Zimbrão, G., Schwarz, H., Mitschang, B., Souza, J.M.: DWFIST: The Data Warehouse of Frequent Itemsets Tactics Approach. In: Darmont, J., Boussaid, O. (eds.) Processing and Managing Complex Data for Decision Support, pp. 185–214. Idea Group Publishing, USA (2006)

    Google Scholar 

  9. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. In: Proc. Int. Symp. Temp. Representation and Reasoning, pp. 111–118 (2001)

    Google Scholar 

  10. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings KDD 1998, pp. 80–86. AAAI Press, New York, USA (1998)

    Google Scholar 

  11. Manku, G., Motwani, R.: Approximate frequency counts over data streams. In: VLDB Conf., pp. 346–357 (2002)

    Google Scholar 

  12. Mannila, H., Toivonen, H.: Multiple Uses of Frequent Sets and Condensed Representations. In: Proceedings KDD 1996, pp. 189–194. AAAI Press, Portland (1996)

    Google Scholar 

  13. Monteiro, R.S., Zimbrão, G., Schwarz, H., Mitschang, B., Souza, J.M.: Building the Data Warehouse of Frequent Itemsets in the DWFIST Approach. In: Proceedings of the 15th Int. Symp. on Methodologies for Intelligent Systems, May 2005, Saratoga Springs, NY (2005)

    Google Scholar 

  14. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: Proc. of the 14th Int’l Conf. on Data Engineering, pp. 412–421 (1998)

    Google Scholar 

  15. Agrawal, R., Arning, A., Bollinger, T., Mehta, M., Shafer, J., Srikant, R.: The quest data mining system. In: Proc. of the 2nd KDD, August 1996, Portland, Oregon (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Il Yeal Song Johann Eder Tho Manh Nguyen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monteiro, R.S., Zimbrão, G., Schwarz, H., Mitschang, B., de Souza, J.M. (2007). DWFIST: Leveraging Calendar-Based Pattern Mining in Data Streams. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2007. Lecture Notes in Computer Science, vol 4654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74553-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74553-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74552-5

  • Online ISBN: 978-3-540-74553-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics