Abstract
Many studies of spatiotemporal pattern discovery partition data space into disjoint cells for effective processing. However, the discovery accuracy of the space-partitioning schemes highly depends on space granularity. Moreover, it cannot describe data statistics well when data spreads over not only one but many cells. In this study, we introduce a novel approach which takes advantages of the effectiveness of space-partitioning methods but overcomes those problems. Specifically, we uncover frequent regions where an object frequently visits from its trajectories. This process is unaffected by the space-partitioning problems. We then explain the relationships between the frequent regions and the partitioned cells using trajectory pattern models based on hidden Markov process. Under this approach, an object’s movements are still described by the partitioned cells, however, its patterns are explained by the frequent regions which are more precise. Our experiments show the proposed method is more effective and accurate than existing space-partitioning methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ishikawa, Y., Tsukamoto, Y., Kitagawa, H.: Extracting mobility statistics from indexed spatio-temporal datasets. In: STDBM, pp. 9–16 (2004)
Peng, W.C., Chen, M.S.: Developing data allocation schemes by incremental mining of user moving patterns in a mobile computing system. TKDE 15(1), 70–85 (2003)
Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases. In: Lee, M.L., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, Springer, Heidelberg (2006)
Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal aggregation using sketches. In: ICDE, p. 214 (2004)
Jensen, C.S., Lin, D., Ooi, B.C., Zhang, R.: Effective density queries on continuously moving objects. In: ICDE, p. 71 (2006)
Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: SIGKDD, pp. 236–245 (2004)
Ishikawa, Y., Machida, Y., Kitagawa, H.: A dynamic mobility histogram construction method based on markov chains. In: SSDBM, pp. 359–368 (2006)
Song, M., Ryu, J., Lee, S., Hwang, C.S.: Considering mobility patterns in moving objects database. In: ICPP, p. 597 (2003)
Yang, M.H., Chen, L.W., Sheu, J.P., Tseng, Y.C.: A traveling salesman mobility model and its location tracking in pcs networks. In: ICDCS, pp. 517–523 (2001)
Bhattacharya, A., Das, S.K.: Lezi-update: an information-theoretic approach to track mobile users in pcs networks. In: MobiCom, pp. 1–12 (1999)
Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 425–442. Springer, Heidelberg (2001)
Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–286 (1989)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: SIGKDD, pp. 226–231 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jeung, H., Shen, H.T., Zhou, X. (2007). Mining Trajectory Patterns Using Hidden Markov Models. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2007. Lecture Notes in Computer Science, vol 4654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74553-2_44
Download citation
DOI: https://doi.org/10.1007/978-3-540-74553-2_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74552-5
Online ISBN: 978-3-540-74553-2
eBook Packages: Computer ScienceComputer Science (R0)