Abstract
We propose a privacy-preserving protocol for computing aggregation queries over the join of private tables. In this problem, several parties wish to share aggregated information over the join of their tables, but want to conceal the details that generate such information. The join operation presents a challenge to privacy preservation because it requires matching individual records from private tables. We solve this problem by a novel sketching protocol that securely computes some randomized summary information over private tables. It ensures that during the query computation process, no party will learn other parties’ private data, including the individual records and data distributions. Previous works have not provided this level of privacy for such queries.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adam, N.R., Wortman, J.C.: Security-control methods for statistical databases. ACM Computing Surveys 21(4), 515–556 (1989)
Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: SIGMOD (2003)
Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: SIGMOD (2005)
Alon, N., Gibbons, P.B., Matias, Y., Szegedy, M.: Tracking join and self-join sizes in limited storage. In: PODS (1999)
Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. In: STOC (1996)
Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. In: SIGKDD Explorations (2002)
Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing complex aggregate queries over data streams. In: SIGMOD (2002)
Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: Computer Security Applications Conference (2001)
Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Workshop on Privacy, Security, and Data Mining. In: ICDM (2002)
Emekci, F., Agrawal, D., Abbadi, A.E., Gulbeden, A.: Privacy preserving query processing using third parties. In: ICDE (2006)
Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T.: On private scalar product computation for privacy-preserving data mining. In: International Conference in Information Security and Cryptology (2004)
Goldreich, O.: Secure multi-party computation. Working draft, Version 1.3 (2001)
Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals, ICDE (1996)
Jefferies, N., Mitchell, C., Walker, M.: A proposed architecture for trusted third party services. In: Cryptography Policy and Algorithms Conference (1995)
Kantarcioglu, M., Vaidya, J.: An architecture for privacy-preserving mining of client information. In: Workshop on Privacy, Security and Data Mining, ICDM (2002)
National Institute of Standards and Technology (NIST), Secure hash standard, Federal Information Processing Standards Publication (FIPS). vol. 180(2) (2002)
She, R., Wang, K., Fu, A.W., Xu, Y.: Computing join aggregates over private tables. Technical report TR 2007-12, School of Computing Science, Simon Fraser University (2007), http://www.cs.sfu.ca/research/publications/techreports/
Stinson, D.R.: Cryptography: theory and practice, 3rd edn. Chapman & Hall/CRC (2006)
Vaidya, J.S., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: SIGKDD, pp. 639–644 (2002)
Wang, L., Jajodia, S., Wijesekera, D.: Securing OLAP data cubes against privacy breaches. In: IEEE Symposium on Security and Privacy (2004)
Yao, A.C.: How to generate and exchange secrets. In: 27th IEEE Symposium FOCS, IEEE Computer Society Press, Los Alamitos (1986)
Zhang, N., Zhao, W., Chen, J.: Cardinality-based inference control in OLAP systems: an information theoretical Approach. In: DOLAP (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
She, R., Wang, K., Fu, A.W., Xu, Y. (2007). Computing Join Aggregates over Private Tables. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2007. Lecture Notes in Computer Science, vol 4654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74553-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-74553-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74552-5
Online ISBN: 978-3-540-74553-2
eBook Packages: Computer ScienceComputer Science (R0)