Skip to main content

A Novel Lower-Dimensional-Search Algorithm for Numerical Optimization

  • Conference paper
Advances in Computation and Intelligence (ISICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4683))

Included in the following conference series:

  • 1481 Accesses

Abstract

In the present study, a novel strategy of Lower-dimensional-Search Algorithm (LDSA) is proposed for solving the complex numerical optimization problems. The crossover operator of the LDSA algorithm searches a lower-dimensional neighbor of the parent points where the neighbor center is the parents’ barycenter, therefore, the new algorithm converges fast. The niche impaction operator and the offspring mutation operator preserve the diversity of the population. The proposed LDSA strategies are applied to 22 test problems. These functions are widely used as benchmark in numerical optimization. The experimental results are reported here show that the LDSA algorithm is an effective algorithm for the complex numerical optimization problems. What’s more is that the LDSA algorithm is simple and easy to be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing (1997)

    Google Scholar 

  2. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 2nd edn. Springer, New York (1994)

    MATH  Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  4. Parsopoulos, K.E., Vrahatis, M.N., N, M.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1(2-3), 235–306 (2002)

    Article  MATH  Google Scholar 

  5. Andrews, P.S.: An Investigation into Mutation Operators for Particle Swarm Optimization. 2006 IEEE Congress on Evolutionary Computation, pp.3789–3796 (2006)

    Google Scholar 

  6. Storn, R., Price, K.V.: Differential evolution-A simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  Google Scholar 

  7. Lampinen, J., Zelinka, I.: Mixed Variable Non-Linear Optimization by Differential Evolution. In: Proceedings of Nostradamus’99,2nd International Prediction Conference, pp. 45–55. Zlin, Czech Republic. Technical University of Brno, Faculty of Technology Zlin, Department of Automatic Control (October 1999), ISBN 80-214-1424-3

    Google Scholar 

  8. Price, K., Storn, R., Lampinen, J.: Differential Evolution –A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Gehlhaar, D.K., Fogel, D.B.: Tuning evolutionary programming for conformationally flexible molecular docking. In: Fogel, L.J., Angeline, P.J., Bäck, T. (eds.) Evolutionary Programming V: Proc. of the Fifth Annual Conference on Evolutionary Programming, pp. 419–429. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  10. Yao, X., Liu, Y., Lin, G.M.: Evolutionary programming made faster. IEEE Trans. Evolutionary Computation 3, 82–102 (1999)

    Article  Google Scholar 

  11. Gustafson, S., Burke, E.K.: A Niche for Parallel Island Models: Outliers and Local Search. In: ICPPW 2005. Proceedings of the 2005 International Conference on Parallel Processing Workshops, pp. 1530–2016 (2005)

    Google Scholar 

  12. Törn, A., Z̆ilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)

    Google Scholar 

  13. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  14. Tu, Z., Lu, Y.: A robust stochastic genetic algorithm (stga) for global numerical optimization. IEEE Trans. Evolutionary Computation 8(5), 456–470 (2004)

    Article  Google Scholar 

  15. André, V., da Cruz, A., Vellasco, M.M.B.R.: Quantum-Inspired Evolutionary Algorithm for Numerical Optimization. 2006 IEEE Congress on Evolutionary Computation, pp. 9181–9187 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, H. et al. (2007). A Novel Lower-Dimensional-Search Algorithm for Numerical Optimization. In: Kang, L., Liu, Y., Zeng, S. (eds) Advances in Computation and Intelligence. ISICA 2007. Lecture Notes in Computer Science, vol 4683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74581-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74581-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74580-8

  • Online ISBN: 978-3-540-74581-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics